Инд. авторы: | Пестунов И.А., Бериков В.Б., Синявский Ю.Н. |
Заглавие: | Сегментация многоспектральных изображений на основе ансамбля непараметрических алгоритмов кластеризации |
Библ. ссылка: | Пестунов И.А., Бериков В.Б., Синявский Ю.Н. Сегментация многоспектральных изображений на основе ансамбля непараметрических алгоритмов кластеризации // Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева. - 2010. - Т.5(31). - Ст.11. - ISSN 1816-9724. |
Внешние системы: | РИНЦ: 16354279; |
Реферат: | rus: Предложен метод сегментации многоспектральных изображений на основе ансамбля непараметрических алгоритмов; дано теоретическое обоснование метода. Результаты статистического моделирования на модельных данных и реальных изображениях подтверждают эффективность предложенного метода. eng: The method for constructing an ensemble of nonparametric clustering algorithms is proposed. Its theoretical substantiation is resulted. Results of the model data and real images confirm the efficiency of the proposed method. |
Ключевые слова: | непараметрические алгоритмы кластеризации; ансамблевый подход; Multispectral image segmentation; nonparametric clustering algorithms; ensemble approach; сегментация многоспектральных изображений; |
Издано: | 2010 |
Физ. характеристика: | 11, с.56-64 |
Цитирование: | 1. Гонсалес Р., Вудс Р. Цифровая обработка изображений. М. : Техносфера, 2006. С. 812. 2. Dey V., Zhang Y., Zhong M. A review on image segmentation techniques with remote sensing perspective // ISPRS TC VII Symposium - 100 Years ISPRS, Vienna. Austria. July 5-7 2010. IAPRS. Vol. XXXVIII. Part 7A. P. 31-42. 3. Rekik A., Zribi M., Hamida A., Benjelloun1 M. Review of satellite image segmentation for an optimal fusion system based on the edge and region approaches // IJCSNS International Journal of Computer Science and Network 242 Security. 2007. Vol. 7. № 10. P. 242-250. 4. Jain A. K., Duin R. P. W., Mao J. Statistical Pattern Recognition: A Review // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000. Vol. 22. № 1. P. 4-37. 5. Clausi D. A. K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation // Pattern Recognition. 2002. Vol. 35. № 9. P. 1959-1972. 6. Бериков В. Б. Построение ансамбля деревьев решений в кластерном анализе // Вычислительные технологии. 2010. Т. 15. № 1. С. 40-52. 7. Strehl A., Ghosh J. Clustering ensembles - a knowledge reuse framework for combining multiple partitions // The Journal of Machine Learning Research. 2002. Vol. 38. P. 583-617. 8. Hong Y., Kwong S. To combine steady-state genetic algorithm and ensemble learning for data clustering // Pattern Recognition Letters. 2008. Vol. 29(9). P. 1416-1423. 9. Jain A. K. Data clustering: 50 years beyond K-means // Pattern Recognition Letters. 2010. Vol. 31, Is. 8. P. 651-666. 10. Parzen E. On the estimation of a probability density function and the mode // The Annals of Mathematical Statistics. 1962. Vol. 33. P. 1065-1076. 11. Rosenblatt M. Remarks on some nonparametric estimates of a density function // The Annals of Mathematical Statistics. 1956. Vol. 27. P. 832-837. 12. Пестунов И. А., Синявский Ю. Н. Непараметрический алгоритм кластеризации данных дистанционного зондирования на основе grid-подхода // Автометрия. 2006. Т. 42. № 2. С. 90-99. 13. Епанечников В. А. Непараметрическая оценка многомерной плотности вероятности // Теория вероятностей и ее применение. 1969. Т. 14. № 1. С. 156-160. 14. Comaniciu D., Meer P. Mean shift: A Robust Approach toward Feature Space Analysis // IEEE Transactions on Pattern Analysis Machine Intelligence. 2002. Vol. 24. № 5. P. 603-619. 15. Fukunaga K., Hosteeler L. D. The estimation of the gradient of a density function, with applications in patter recognition // IEEE Trasactions on Informational Theory. 1975. Vol. 21. P. 32-40. 16. Cheng Y. Mean shift, mode seeking, and clustering // IEEE Tans. Pattern Analysis and Machine Intelligence. 1995. Vol. 17. P. 790-799. 17. Comaniciu D., Meer P. Distribution Free Decomposition of Multivariate Data // Pattern Analysis and Applications. 1999. Vol. 2. P. 22-30. 18. Freedman D., Kisilev P. Fast Mean Shift by Compact Density Representation // IEEE Conference on Computer Vision and Pattern Recognition. 2009. P. 1818-1825. |