Инд. авторы: Talochkin A.B., Tereshchenko O.E., Kokh K.A.
Заглавие: Optical phonon spectrum of the ge2sb2te5 single crystal
Библ. ссылка: Talochkin A.B., Tereshchenko O.E., Kokh K.A. Optical phonon spectrum of the ge2sb2te5 single crystal // Journal of Experimental and Theoretical Physics Letters (JETP Letters). - 2021. - Vol.113. - Iss. 10. - P.651-656. - ISSN 0021-3640. - EISSN 1090-6487.
Внешние системы: DOI: 10.1134/S002136402110012X; РИНЦ: 46932785;
Реферат: eng: Raman scattering by optical phonons of the Ge2Sb2Te5 single crystal grown by the Bridgman method is studied for the first time. Another method for obtaining this compound based on annealing of the amorphous state and used in numerous previous studies leads to the formation of various defects which significantly affect the optical phonons spectrum. This hampers the identification of observed phonon spectra. The use of the bulk Ge2Sb2Te5 single crystal has made it possible to exclude the effect of lattice defects and to reveal new features of the phonon spectrum associated with the lattice structure. Broad features typical of the amorphous state and narrow phonon lines of the crystal state are observed in the spectra. It has been shown that the former component is due to disorder appearing because of the mixing of Ge and Sb atoms in corresponding layers of the lattice. Moreover, there are optical phonons whose frequencies are independent of this mi-xing in view of the specificity of their eigenvectors. These modes are manifested in spectra as intense narrow lines.
Издано: 2021
Физ. характеристика: с.651-656
Цитирование: 1. Phase-Change Materials: Science and Applications, Ed. by S. Raoux and M. Wuttig (Springer Science, New York, 2009). 2. T. Ohta and S. R. Ovshinsky, in Photo-Induced Metastability in Amorphous Semiconductors, Ed. by A. V. Kolobov (Wiley-VCH, Berlin, 2003). 3. R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, Nano Lett. 10, 414 (2010). DOI: 10.1021/nl902777z 4. S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1991). DOI: 10.1103/PhysRevLett.21.1450 5. M. Wuttig and C. Steimer, Appl. Phys. A 87, 411 (2007). DOI: 10.1007/s00339-007-3931-y 6. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, Nat. Mater. 3, 703 (2004). DOI: 10.1038/nmat1215 7. J. Akola and R. O. Jones, Phys. Rev. B 76, 235201 (2007). DOI: 10.1103/PhysRevB.76.235201 8. A. V. Kolobov, J. Haines, A. Pradel, M. Ribes, P. Fons, J. Tominaga, Y. Katayama, T. Hammouda, and T. Uruga, Phys. Rev. Lett. 97, 035701 (2006). DOI: 10.1103/PhysRevLett.97.035701 9. T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, Y. Tabata, and M. Takata, Inorg. Chem. 45, 2235 (2006). DOI: 10.1021/ic051677w 10. G. W. Burr, M. J. Breitwisch, M. Franceschini, and D. Garetto, J. Vac. Sci. Technol. 28, 223 (2010). DOI: 10.1116/1.3301579 11. I. I. Petrov, R. M. Imamov, and Z. G. Pinsker, Sov. Phys. Crystallogr. 13, 339 (1968). 12. B. J. Kooi and J. Th. de Hosson, J. Appl. Phys. 92, 3584 (2002). DOI: 10.1063/1.1502915 13. M. Zhu, K. Ren, L. Liu, S. Liu, X. Miao, M. Xu, and Z. Song, Phys. Rev. Mater. 3, 033603 (2019). DOI: 10.1103/PhysRevMaterials.3.033603 14. T. Matsunaga, N. Yamada, and Y. Kubota, Acta Crystallogr. B 60, 685 (2004). DOI: 10.1107/S0108768104022906 15. A. M. Mio, S. M. S. Privitera, V. Bragaglia, F. Arciprete, S. Cecchi, G. Litrico, C. Persch, R. Calarco, and E. Rimini, Sci. Rep. 7, 2616 (2017). DOI: 10.1038/s41598-017-02710-3 16. P. Nemec, A. Moreac, V. Nazabal, M. Pavlišta, J. Prikřyl, and M. Frumar, J. Appl. Phys. 106, 103509 (2009). DOI: 10.1063/1.3259435 17. K. S. Andrikopoulos, S. N. Yannopoulos, A. V. Kolobov, P. Fons, and J. Tominaga, J. Phys. Chem. Solids 68, 1074 (2007). DOI: 10.1016/j.jpcs.2007.02.027 18. H. Satoh, K. Sugawara, and K. Tanaka, J. Appl. Phys. 99, 024306 (2006). DOI: 10.1063/1.2163010 19. L. Zheng, X. Zhu, L. Zhai, Y. Hu, H. Zou, B. Liu, M. Pei, and Z. Song, Eur. Phys. J. Appl. Phys. 77, 30102 (2017). DOI: 10.1051/epjap/2017160397 20. S. A. Yakovlev, A. V. Ankudinov, Yu. V. Vorob’ev, M. M. Voronov, S. A. Kozyukhin, B. T. Melekh, and A. B. Pevtsov, Semiconductors 52, 809 (2018). DOI: 10.1134/S1063782618060246 21. G. C. Sosso, S. Caravati, R. Mazzarello, and M. Bernasconi, Phys. Rev. B 83, 134201 (2011). DOI: 10.1103/PhysRevB.83.134201 22. G. C. Sosso, S. Caravati, C. Gatti, S. Assoni, and M. Bernasconi, J. Phys.: Condens. Matter 21, 245401 (2009). 23. M. Behrens, A. Lotnyk, H. Bryja, J. W. Gerlach, and B. Rauschenbach, Materials 13, 2082 (2020). DOI: 10.3390/ma13092082 24. H.-K. Ji, H. Tong, H. Qian, Y.-J. Hui, N. Liu, P. Yan, and X.-S. Miao, Sci. Rep. 6, 39206 (2016). DOI: 10.1038/srep39206 25. L. Zheng, X. Zhu, L. Zhai, Y. Hu, H. Zou, B. Liu, M. Pei, and Z. Song, Eur. Phys. J. Appl. Phys. 77, 30102 (2017). DOI: 10.1051/epjap/2017160397 26. J. Xu, C. Qi, L. Chen, L. Zheng, and Q. Xie, AIP Adv. 8, 055006 (2018). DOI: 10.1063/1.5025204 27. J. Kellner, G. Bihlmayer, M. Liebmann, S. Otto, et al., Commun. Phys. 1, 5 (2018). DOI: 10.1038/s42005-018-0005-8 28. M. Nurmamat, K. Okamoto, S. Y. Zhu, et al., ACS Nano 14, 9059 (2020). DOI: 10.1021/acsnano.0c04145 29. R. German, E. V. Komleva, P. Stein, V. G. Mazurenko, Z. Wang, S. V. Streltsov, Y. Ando, and P. H. M. van Loosdrecht, Phys. Rev. Mater. 3, 054204 (2019). DOI: 10.1103/PhysRevMaterials.3.054204