Инд. авторы: Sokol A.G., Kruk A.N.
Заглавие: Role of co2 in the evolution of kimberlite magma: experimental constraints at 5.5 gpa and 1200–1450 °c
Библ. ссылка: Sokol A.G., Kruk A.N. Role of co2 in the evolution of kimberlite magma: experimental constraints at 5.5 gpa and 1200–1450 °c // Lithos. - 2021. - Vol.386-387. - Art.106042. - ISSN 0024-4937. - EISSN 1872-6143.
Внешние системы: DOI: 10.1016/j.lithos.2021.106042; РИНЦ: 46750994;
Реферат: eng: According to the existing models of kimberlite origin, free exsolution CO2 may be an important agent in the evolution of primary kimberlite magma and initiation of crack propagation. We study the reaction of garnet lherzolite with carbonatitic melt rich in molecular CO2 and H2O in experiments at 5.5 GPa and 1200–1450 °C. The experimental results show that carbonation of olivine with formation of orthopyroxene and magnesite can buffer the contents of molecular CO2 in the melt, which impedes immediate separation of CO2 fluid from melt equilibrated with the peridotite source. The solubility of molecular CO2 in the melt decreases from 20 -25 wt% at 4.5–6.8 wt% SiO2 typical of carbonatite to below 7–12 wt% in more silicic melts with 26–32 wt% SiO2. Interaction of garnet lherzolite with carbonatitic melt (at a weight proportion of 2:1) in the presence of 2–3 wt% H2O and 17–24 wt% of total CO2 at 1200–1450 °C yields low-SiO2 (<10 wt%) alkali‑carbonated melts, which shows multiphase saturation with magnesite-bearing garnet harzburgite. Thus, carbonatitic melts rich in volatiles can originate in a harzburgite source at moderate temperatures common to continental lithospheric mantle (CLM). Excessive volatiles may be present in carbonatitic melts not equilibrated with the peridotitic source due to the formation of metasomatic reaction zones. Having separated from the source, carbonatitic magma enriched in molecular CO2 and H2O can rapidly become more silicic (>25 wt% SiO2) by dissolution and carbonation of entrapped peridotite. Furthermore, interaction of garnet lherzolite with carbonatitic melt rich in K, CO2, and H2O at 1350 °C produces immiscible carbonate-silicate and K-rich silicate melts. Quenched silicate melt develops globules of foam-like vesicular glass. Differentiation of immiscible melts early during their ascent may equalize the compositions of kimberlite magmas generated in different CLM sources. The fluid phase can release explosively from ascending magma at lower pressures as a result of SiO2 increase which reduces the solubility of CO2 and due to the decarbonation reaction of magnesite and orthopyroxene.
Ключевые слова: experiment; fluid; carbonatite; mantle; magma; kimberlite;
Издано: 2021
Физ. характеристика: 106042
Цитирование: 1. Abersteiner, A., Giuliani, A., Kamenetsky, V.S., Phillips, D., Petrographic and melt-inclusion constraints on the petrogenesis of a magmaclast from the Venetia kimberlite cluster, South Africa. Chem. Geol. 455 (2017), 331–341. 2. Abersteiner, A., Kamenetsky, V.S., Graham, D., Kamenetsky, P., Goemann, M., Ehrig, K., Rodemann, T., Monticellite in group-I kimberlites: implications for evolution of parental melts and post-emplacement CO2 degassing. Chem. Geol. 478 (2018), 76–88. 3. Arndt, N.T., Guitreau, M., Boullier, A.M., Le Roex, A., Tommasi, A., Cordier, P., Sobolev, A., Olivine, and the origin of kimberlite. J. Petrol. 51 (2010), 573–602. 4. Bataleva, Y.V., Kruk, A.N., Novoselov, I.D., Furman, O.V., Palyanov, Y.N., Decarbonation reactions involving ankerite and dolomite under upper Mantle P, T-parameters: experimental modeling. Minerals, 10(8), 2020, 715. 5. Becker, M., Le Roex, A.P., Geochemistry of South African on- and off-craton, group I and group II kimberlites: petrogenesis and source region evolution. J. Petrol. 47 (2006), 673–703. 6. Brey, G.P., Bulatov, V.K., Girnis, A.V., Lahaye, Y., Experimental melting of carbonated peridotite at 6–10 GPa. J. Petrol. 49 (2008), 797–821. 7. Brey, G.P., Bulatov, V.K., Girnis, A.V., Influence of water and fluorine on melting of carbonated peridotite at 6 and 10 GPa. Lithos 112 (2009), 249–259. 8. Brey, G.P., Bulatov, V.K., Girnis, A.V., Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle. Chem. Geol. 281 (2011), 333–342. 9. Brooker, R.A., Kohn, S.C., Holloway, J.R., McMillan, P.F., Carroll, M.R., Solubility, speciation and dissolution mechanisms for CO2 in melts on the NaAlO2–2 join. Geochim. Cosmochim. Acta 63:21 (1999), 3549–3565. 10. Dasgupta, R., Hirschmann, M.M., Effect of variable carbonate concentration on the solidus of mantle peridotite. Am. Mineral. 92 (2007), 370–379. 11. Dasgupta, R., Hirschmann, M.M., A modified iterative sandwich method for determination of near-solidus partial melt compositions. II. Application to determination of near-solidus melt compositions of carbonated peridotite. Contrib. Mineral. Petrol. 154 (2007), 647–661. 12. Dasgupta, R., Mallik, A., Tsuno, K., Withers, A.C., Hirth, G., Hirschmann, M.M., Carbon-dioxide-rich silicate melt in the Earth's upper mantle. Nature 493 (2013), 211–222. 13. Day, H.W., A revised diamond-graphite transition curve. Am. Mineral., 97(1), 2012, 52e62. 14. Dvir, O., Kessel, R., The effect of CO2 on the water-saturated solidus of K-poor peridotite between 4 and 6 GPa. Geochim. Cosmochim. Acta 206 (2017), 184–200. 15. Edgar, A.D., Charbonneau, H.E., Melting experiments on a SiO2-poor, CaO-rich aphanitic kimberlite from 5–10 GPa and their bearing on sources of kimberlite magmas. Am. Mineral. 78 (1993), 132–142. 16. Edgar, A.D., Arima, M., Baldwin, D.K., Bell, D.R., Shee, S.R., Skinner, E.M.W., Walker, E.C., High-pressure high-temperature melting experiments on a SiO2-poor aphanitic kimberlite from the Wesselton mine, Kimberley, South Africa. Am. Mineral. 73 (1988), 524–533. 17. Eggler, D.H., The effect of CO2 upon partial melting of peridotite in the system Na2O–CaO–Al2O3–MgO–SiO2–CO2 to 35 kb, with an analysis of melting in a peridotite-H2O–CO2 system. Am. J. Sci. 278 (1978), 305–343, 10.2475/ajs.278.3.305. 18. Eggler, D.H., Wendlandt, R.F., Experimental studies on the relationships between kimberlite magma and partial melting of peridotite. Boyd, F.R., Meyer, H.O.A., (eds.) Kimberlites, Diatremes and Diamonds: Their Geology, Petrology, and Geochemistry 1, 1979, American Geophysical Union, Washington, 331–378. 19. Foley, S.F., Yaxley, G.M., Rosenthal, A., Buhre, S., Kiseeva, E.S., Rapp, R.P., Jacob, D.E., The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112 (2009), 274–283. 20. Ghosh, S., Litasov, K., Ohtani, E., Phase relations and melting of carbonated peridotite between 10 and 20 GPa: a proxy for alkali- and CO2-rich silicate melts in the deep mantle. Contrib. Mineral. Petrol., 167, 2014, 964. 21. Girnis, A.V., Ryabchikov, I.D., Conditions and mechanisms of generation of kimberlite magmas. Geol. Ore Deposit. 47 (2005), 476–487. 22. Girnis, A.V., Brey, G.P., Ryabchikov, I.D., Origin of group IA kimberlites: fluid saturated melting experiments at 45–55 kbar. Earth Planet. Sci. Lett. 134 (1995), 283–296. 23. Girnis, A.V., Bulatov, V.K., Brey, G.P., Formation of primary kimberlite melts – constraints from experiments at 6–12 GPa and variable CO2/H2O. Lithos 127 (2011), 401–413. 24. Giuliani, A., Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites world-wide. Lithos 312–313 (2018), 322–342. 25. Giuliani, A., Pearson, D.G., Soltys, A., Dalton, H., Phillips, D., Foley, S.F., Lim, E., Goemann, K., Griffin, W.L., Mitchell, R.H., Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation. Sci. Adv., 6(17), 2020, eaaz0424. 26. Golovin, A.V., Sharygin, I.S., Kamenetsky, V.S., Korsakov, A.V., Yaxley, G.M., Alkali-carbonate melts from the base of cratonic lithospheric mantle: links to kimberlites. Chem. Geol. 483 (2018), 261–274. 27. Golovin, A.V., Sharygin, I.S., Korsakov, A.V., Kamenetsky, V.S., Abersteiner, A., Can primitive kimberlite melts be alkali-carbonate liquids: composition of the melt snapshots preserved in deepest mantle xenoliths. J. Raman Spectrosc. 51 (2020), 1849–1867. 28. Grassi, D., Schmidt, M.W., Melting of carbonated pelites at 8–13 GPa: generating K-rich carbonatites for mantle metasomatism. Contrib. Mineral. Petrol. 162 (2011), 169–191. 29. Gudfinnsson, G.H., Presnall, D.C., Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J. Petrol. 46 (2005), 1645–1659. 30. Harris, M., le Roex, A., Class, C., Geochemistry of the Uintjiesberg kimberlite, South Africa: petrogenesis of an off-craton, group I, kimberlite. Lithos 74 (2004), 149–165. 31. Howarth, G.H., Taylor, L.A., Multi-stage kimberlite evolution tracked in zoned olivine from the Benfontein sill, South Africa. Lithos 262 (2016), 384–397. 32. Kamenetsky, V.S., Yaxley, G.M., Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochim. Cosmochim. Acta 158 (2015), 48–56. 33. Kamenetsky, V.S., Kamenetsky, M.B., Sobolev, A.V., Golovin, A.V., Demouchy, S., Faure, K., Sharygin, V.V., Kuzmin, D.V., Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. J. Petrol. 49 (2008), 823–839. 34. Kamenetsky, V.S., Kamenetsky, M.B., Weiss, Y., Navon, O., Nielsen, T.F.D., Mernagh, T.P., How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos 112 (2009), 334–346. 35. Kamenetsky, V.S., Kamenetsky, M.B., Sobolev, A.V., Golovin, A.V., Sharygin, V.V., Pokhilenko, N.P., Sobolev, N.V., Can pyroxenes be liquidus minerals in the kimberlite magma?. Lithos 112 (2009), 213–222. 36. Kamenetsky, V.S., Grütter, H., Kamenetsky, M.B., Gömann, K., Parental carbonatitic melt of the Koala kimberlite (Canada): constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chem. Geol. 353 (2013), 96–111. 37. Kamenetsky, V.S., Golovin, A.V., Maas, R., Giuliani, A., Kamenetsky, M.B., Weiss, Y., Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth Sci. Rev. 139 (2014), 145–167. 38. Kavanagh, J.L., Sparks, R.S.J., Temperature changes in ascending kimberlite magma. Earth Planet. Sci. Lett. 286 (2009), 404–413. 39. Kjarsgaard, B.A., Pearson, D.G., Tappe, S., Nowell, G.M., Dowall, D.P., Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: comparisons to a global database and applications to the parent magma problem. Lithos 112S (2009), 236–248. 40. Kopylova, M.G., Matveev, S., Raudsepp, M., Searching for parental kimberlite melt. Geochim. Cosmochim. Acta 71 (2007), 3616–3629. 41. Kruk, A.N., Sokol, A.G., Palyanov, Y.N., Phase relations in the harzburgite–hydrous carbonate melt at 5.5–7.5 GPa and 1200–1350 С°. Petrology 26:6 (2018), 575–587. 42. Le Roex, A.P., Bell, D.R., Davis, P., Petrogenesis of group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J. Petrol. 44 (2003), 2261–2286. 43. Lensky, N.G., Niebo, R.W., Holloway, J.R., Lyakhovsky, V., Navon, O., Bubble nucleation as a trigger for xenolith entrapment in mantle melts. Earth Planet. Sci. Lett. 245:1–2 (2006), 278–288. 44. Luth, R.W., The activity of silica in kimberlites, revisited. Contrib. Mineral. Petrol. 158 (2009), 283–294. 45. Maimon, O., Lyakhovsky, V., Melnik, O., Navon, O., The propagation of a dyke driven by gas-saturated magma. Geophys. J. Int. 189:2 (2012), 956–966. 46. Mitchell, R.H., Kimberlites: Mineralogy, Geochemistry and Petrology. 1986, Plenum Press, New York 442 pp. 47. Mitchell, R.H., Petrology of hypabyssal kimberlites: relevance to primary magma compositions. J. Volcanol. Geotherm. Res. 174 (2008), 1–8. 48. Mitchell, R.H., Giuliani, A., O'Brien, H., What is a kimberlite? Petrology and mineralogy of hypabyssal kimberlites. Elements 15:6 (2019), 381–386. 49. Moussallam, Y., Morizet, Y., Massuyeau, M., Laumonier, M., Gaillard, F., CO2 solubility in kimberlite melts. Chem. Geol. 418 (2015), 198–205. 50. Mysen, B., Structure–property relationships of COHN-saturated silicate melt coexisting with COHN fluid: a review of in-situ, high-temperature, high-pressure experiments. Chem. Geol. 346 (2013), 113–124. 51. Palyanov, Y.N., Borzdov, Y.M., Khokhryakov, A.F., Kupriyanov, I.N., Sokol, A.G., Effect of nitrogen impurity on diamond crystal growth processes. Crystal Growth Des. 10 (2010), 3169–3175. 52. Palyanov, Y.N., Sokol, A.G., Khokhryakov, A.F., Kruk, A.N., Conditions of diamond crystallization in kimberlite melt: experimental data. Russ. Geol. Geophys. 56:1–2 (2015), 196–210. 53. Palyanov, Y.N., Kupriyanov, I.N., Sokol, A.G., Borzdov, Y.M., Khokhryakov, A.F., Effect of CO2 on crystallization and properties of diamond from ultra-alkaline carbonate melt. Lithos 265 (2016), 339–350. 54. Persikov, E.S., Bukhtiyarov, P.G., Sokol, A.G., Viscosity of haplokimberlitic and basaltic melts at high pressures: experimental and theoretical studies. Chem. Geol. 497 (2018), 54–63. 55. Pownceby, M.I., O'Neill, H.S.C., Thermodynamic data from redox reactions at high temperatures. IV. Calibration of the Re–ReO2 oxygen buffer from EMF and NiO + Ni-Pd redox sensor measurements. Contrib. Mineral. Petrol. 118 (1994), 130–137. 56. Ringwood, A.E., Kesson, S.E., Hibberson, W., Ware, N., Origin of kimberlites and related magmas. Earth Planet. Sci. Lett. 113 (1992), 521–538. 57. Rock, N.M.S., Lamprophyres. 1991, Blackie, New York. 58. Rohrbach, A., Schmidt, M.W., Redox freezing and melting in the Earth's deep mantle resulting from carbon–iron redox coupling. Nature 472 (2011), 209–212. 59. Russell, J.K., Porritt, L.A., Lavallée, Y., Dingwell, D.B., Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481 (2012), 352–356. 60. Sharygin, I.S., Litasov, K.D., Shatskiy, A., Golovin, A.V., Ohtani, E., Pokhilenko, N.P., Melting phase relations of the Udachnaya-East Group-I kimberlite at 3.0–6.5 GPa: experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes. Gondwana Res. 28:4 (2015), 1391–1414 doi: 1016/j.gr.2014.10.005. 61. Sharygin, I.S., Litasov, K.D., Shatskiy, A., Safonov, O.G., Golovin, A.V., Ohtani, E., Pokhilenko, N.P., Experimental constraints on orthopyroxene dissolution in alkali-carbonate melts in the lithospheric mantle: implications for kimberlite melt composition and magma ascent. Chem. Geol. 455 (2017), 44–56. 62. Shatskiy, A., Litasov, K.D., Sharygin, I.S., Ohtani, E., Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5 GPa. Gondwana Res. 45 (2017), 208–227. 63. Shatskiy, A., Bekhtenova, A., Podborodnikov, I.V., Arefiev, A.V., Litasov, K.D., Metasomatic interaction of the eutectic Na-and K-bearing carbonate melts with natural garnet lherzolite at 6 GPa and 1100–1200 °C: toward carbonatite melt composition in SCLM. Lithos, 374, 2020, 105725. 64. Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., Pokhilenko, N.P., Malygina, E.V., Kuzmin, D.V., Sobolev, A.V., Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia. Lithos 112 (2009), 701–713. 65. Sobolev, N.V., Sobolev, A.V., Tomilenko, A.A., Kovyazin, S.V., Batanova, V.G., Kuz'min, D.V., Paragenesis and complex zoning of olivine macrocrysts from unaltered kimberlite of the Udachnaya-East pipe, Yakutia: relationship with the kimberlite formation conditions and evolution. Russ. Geol. Geophys. 56:1–2 (2015), 260–279. 66. Sokol, A.G., Kruk, A.N., Conditions of kimberlite magma generation: experimental constraints. Russ. Geol. Geophys. 56 (2015), 245–259. 67. Sokol, A.G., Pal'yanov, Y.N., Pal'yanova, G.A., Tomilenko, A.A., Diamond crystallization in fluid and carbonate-fluid systems under mantle PT conditions: 1. Fluid composition. Geochem. Int. 42:9 (2004), 830–838. 68. Sokol, A.G., Kupriyanov, I.N., Palyanov, Yu.N., Kruk, A.N., Sobolev, N.V., Melting experiments on the Udachnaya kimberlite at 6.3–7.5 GPa: Implications for the role of H2O in magma generation and formation of hydrous olivine. Geochim. Cosmochim. Acta 101 (2013), 133–155. 69. Sokol, A.G., Kupriyanov, I.N., Palyanov, Yu.N., Partitioning of H2O between olivine and carbonate–silicate melts at 6.3 GPa and 1400 °C: implications for kimberlite formation. Earth Planet. Sci. Lett. 383 (2013), 58–67. 70. Sokol, A.G., Kruk, A.N., Palyanov, Yu.N., The role of water in generation of group II kimberlite magmas: constraints from multiple saturation experiments. Am. Mineral. 99 (2014), 2292–2302. 71. Sokol, A.G., Kruk, A.N., Chebotarev, D.A., Palyanov, Y.N., Carbonatite melt–peridotite interaction at 5.5–7.0 GPa: implications for metasomatism in lithospheric mantle. Lithos 248 (2016), 66–79. 72. Sokol, A.G., Kruk, A.N., Palyanov, Y.N., Sobolev, N.V., Stability of phlogopite in ultrapotassic kimberlite-like systems at 5.5–7.5 GPa. Contrib. Mineral. Petrol., 172(4), 2017, 21. 73. Soltys, A., Giuliani, A., Phillips, D., Kamenetsky, V.S., Maas, R., Woodhead, J., Rodemann, T., In-situ assimilation of mantle minerals by kimberlitic magmas - direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos 256 (2016), 182–196. 74. Spickenbom, K., Sierralta, M., Nowak, M., Carbon dioxide and argon diffusion in silicate melts: insights into the CO2 speciation in magmas. Geochim. Cosmochim. Acta 74:22 (2010), 6541–6564. 75. Stagno, V., Ojwang, D.O., McCammon, C.A., Frost, D.J., The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature 493 (2013), 84–88. 76. Stamm, N., Schmidt, M.W., Asthenospheric kimberlites: volatile contents and bulk compositions at 7 GPa. Earth Planet. Sci. Lett. 474 (2017), 309–321. 77. Stone, R.S., Luth, R.W., Orthopyroxene survival in deep carbonatite melts: implications for kimberlites. Contrib. Mineral. Petrol., 171, 2016, 63. 78. Sun, C., Dasgupta, R., Slab–mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth Planet. Sci. Lett. 506 (2019), 38–52. 79. Takahashi, E., Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. J. Geophys. Res. Solid Earth 91:B9 (1986), 9367–9382. 80. Tappe, S., Smart, K., Torsvik, T., Massuyeau, M., de Wit, M., Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep volatile cycles. Earth Planet. Sci. Lett. 484 (2018), 1–14. 81. Ulmer, P., Sweeney, R.J., Generation and differentiation of group II kimberlites: constraints from a high-pressure experimental study to 10 GPa. Geochim. Cosmochim. Acta 66 (2002), 2139–2153. 82. Wyllie, P.J., Peridotite-CO2-H2O and carbonatitic liquids in the upper asthenosphere. Nature 266 (1977), 45–57. 83. Wyllie, P.J., Mantle fluid compositions buffered in peridodite-CO2-H2O by carbonates, amphibole and phlogopite. J. Geol. 85 (1977), 87–207. 84. Wyllie, P.J., Huang, W.L., Peridotite, kimberlite, and carbonatite explained in the system CaO-MgO-SiO2-CO2. Geology 3:11 (1975), 621–624. 85. Wyllie, P.J., Huang, W.L., Otto, J., Byrnes, A.P., Carbonation of peridotites and decarbonation of siliceous dolomites represented in the system CaO-MgO-SiO2-CO2 to 30 kbar. Tectonophysics 100:1–3 (1983), 359–388.