Инд. авторы: Pokhilenko L.N.
Заглавие: Kelyphite rims on garnets of contrast parageneses in mantle xenoliths from the udachnaya‐east kimberlite pipe (yakutia)
Библ. ссылка: Pokhilenko L.N. Kelyphite rims on garnets of contrast parageneses in mantle xenoliths from the udachnaya‐east kimberlite pipe (yakutia) // Minerals. - 2021. - Vol.11. - Iss. 6. - EISSN 2075-163X.
Внешние системы: DOI: 10.3390/min11060615; РИНЦ: 46831641;
Реферат: eng: A new classification of kelyphitic rims on garnets from xenoliths of peridotitic and eclogitic parageneses of the mantle section under the Udachnaya‐East kimberlite pipe (Yakutia) is presented. Five types of rims are identified: Rim1 develops between garnet and olivine/pyroxene (or rim2) and is composed of high‐alumina pyroxenes, spinel, phlogopite; rim2, the coarse grain part of rim1, is located between rim1 and olivine/pyroxene, and mainly consists of phlogopite and less aluminous larger pyroxenes and spinel; rim3 develops between garnet and kimberlite, and presents with phlogopite and Fe‐Ti spinel; rim4 sometimes presents instead of rim1/rim2 and consists of zoned high‐Cr phlogopite with rare fine grains of chromium spinel; rim5, a “pocket” between garnet and rim1, is represented by microcrystalline aggregates of clinopyroxene, mica, spinel, calcite, and feldspar in different variations. Rims 1, 2, and 3 are typical for garnets of all studied parageneses. Rims 4 and 5 develop on high‐Cr subcalcic garnets of the most depleted peridotites. Reactions of the formation of all types of rims are given in the article. Each type of kelyphite demonstrates a clear enrichment with a certain component: Rim1—MgO and alkalis; rim2—TiO2; rim3—FeO and TiO2; rim4—Cr2O3; and rim5—СаО, suggesting the multistage injection of different components by mantle fluid.
Ключевые слова: Sheared peridotite; metasomatism; High‐alumina pyroxene; Megacrystalline peridotite; Kelyphite rim;
Издано: 2021
Цитирование: 1. Müller, H. Geognostische Skizze der Greifendorfer Serpentin‐Partie. Neues Jahrb. Miner. Geogn. Geol. Petrefakten‐Kunde 1846, 257–288, 2. Delesse, A. Mémoire sur la constitution minéralogique et chimique des roches des Vosges. Serpentine des Vosges. Ann. Mines (4s.) 1850, 18, 309–356. 3. Hochstetter, F. Geognostische Studien aus dem Böhmerwalde. Jahrb. K. K. Geol. Reichsanst. 1854, 5, 1–67. 4. Schrauf, A. Beiträge zur Kenntniss des Associations Kreises der Magnesia Silicate. Z. Krist. Miner. 1882, 6, 321–388. 5. Hezner L. Ein Beitrag zur Kenntnis der Eklogite und Amphibolite mit besonderer Berücksichtigung der Vorkommnisse des mittleren Oetztals. Tschermaks Miner. Petrogr. Mitt. 1903, 2, 437–471. 6. Godard, G.; Martin, S. Petrogenesis of kelyphites in garnet peridotites: A case study from the Ulten zone, Italian Alps. J. Geodyn. 2000, 30, 117–145. 7. Obata, M. Kelyphite and symplectite: Textural and mineralogical diversities and universality, and a new dynamic view of their structural formation. In New Frontiers in Tectonic Research—General Problems, Sedimentary Basins and Island Arcs; Sharkov, E., Ed.; InTech: London, UK, 2011; doi:10.5772/20265, ISBN: 978‐953‐307‐595‐2. Available online: http://www.intechopen.com/books/new‐frontiers‐in‐tectonic‐research‐general‐problems‐sedimentarybasins‐and‐islandarcs/kelyphite‐and‐symplectite‐textural‐and‐mineralogical‐diversities‐and‐universality‐and‐anew‐dynamic1 (accessed on 04.06.2021). 8. Obata, M. Material transfer and local equilibria in a zoned kelyphite from a garnet pyroxenite, Ronda, Spain. J. Petrol. 1994, 35, 271–287. 9. Altherr, R.; Kalt, A. Metamorphic evolution of ultrahigh‐pressure garnet peridotite from the Variscan Vosges Mts. (France). Chem. Geol. 1996, 134, 27–47. 10. Dégi, J.; Abart, R.; Kalman, T.; Bali, E.; Wirth, R.; Rhede, D. Symplectite formation during decompression induced garnet breakdown in lower crustal mafic granulite xenoliths: Mechanisms and rates. Contrib. Mineral. Petrol. 2010, 159, 293–314. 11. Zang, Q.; Enami, M.; Suwa, K. Aluminian orthopyroxene in pyrometamorphosed garnet megacryst from Liaoning and Shandong provinces, northeast China. Eur. J. Mineral. 1993, 5, 153–164. 12. Fermor, L.L. Preliminary note on the origin of meteorites. J. Proc. Asiat. Soc. Bengal 1912, 8, 315–324. 13. Sobolev N.V.; Lodocnikova, V.S. Mineralogy of garnet peridotites. Rus. Geol. Geophys. 1962, 6, 52–59. (In Russian) 14. Fediukova, E. Kelyphitic reaction rims in garnet peridotites. Acta Univ. Carol. Geol. 1979, 3–4, 185–192. 15. Fiala, Y.; Padera, K. The chemistry of the minerals of the pyrope dunite from Borehole T‐7 near Stare (Bohemia). TMPM 1977, 24, 205–219. 16. Kharkiv, A.D.; Vishnevsky, A.A. Features of garnet kellitization from xenoliths of deep rocks in kimberlites. Zap. Vsesoyuznogo Mineral. Obs. 1989, 118, 27–37 (In Russian). 17. Dawson, Y. В.; Smith, I.V. Occurense of diamond in a micagarnet lhersolite xenoliths from kimberlite. Nature 1975, 5501, 580– 581. 18. Treneva, N.V.; Vasilieva, G.L.; Ilupin, I.P. New data on garnets and keliphite rims from kimberlites of Yakutia. Dokl. Earth Sci. 1979, 247, 1471–1474. (In Russian). 19. Spetsius, Z.V.; Griffin, W.L. Trace element composition of garnet kelyphites in xenoliths from Udachnaya as evidence of their origin, In Proceedings of the 7th International Kimberlite Conference, Cape Town, South Africa, April 13–17,1998; Red Roof Design: Cape Town, South Africa, 1999; Volume 7, pp. 853–855. 20. Foley, S.F.; Andronikov, A.V.; Jacob, D.E.; Melzer, S. Evidence from Antarctic mantle peridotite xenoliths for changes in mineralogy, geochemistry and geothermal gradients beneath a developing rift. Geochim. Cosmochim. Acta 2006, 70, 3096–3120. 21. Ilupin, I.P.; Levshov, P.P.; Rovsha, V.S. On the composition and genesis of kelyphite shells on garnet‐pyrope in kimberlites of Yakutia. Uchenye Zap. Nauchno‐Issledovatelskogo Inst. Geol. Arktiki. Reg. Geol. 1969, 16, 45–52. (In Russian) 22. Fiala, J. The distribution of elements in mineral phases of some garnet peridotites from the Bohemian massif. Krystalinikum 1966, 4, 31–53. 23. Van der Wal, D.; Vissers, R.L.M. Structural petrology of the Ronda peridotite, SW Spain: Deformation history. J. Petrol. 1996, 37, 23–43. 24. Pokhilenko, N.P.; Sobolev, N.V.; Boyd, F.R.; Pearson, D.G.; Shimizu, N. Megacrystalline pyrope peridotites in the lithosphere of the Siberian Platform: Mineralogy, geochemical peculiarities and the problem of their origin. Rus. Geol. Geophys. 1993, 34, 1– 84. 25. Pokhilenko, L.N.; Malkovets, V.G.; Kuzmin, D.V.; Pokhilenko, N.P. New Data on the Mineralogy of Megacrystalline Pyrope Peridotite from the Udachnaya Kimberlite Pipe, Siberian Craton, Yakutian Diamondiferous Province. Dokl. Earth Sci. 2014, 454, 179–184. 26. Howarth, G.H.; Barry, P.H.; Pernet‐Fisher, J.F.; Baziotis, I.P.; Pokhilenko, N.P.; Pokhilenko, L.N.; Bodnar, R.J.; Taylor, L.A.; Agashev, A.M. Superplume metasomatism: Evidence from Siberian mantle xenoliths. Lithos 2014, 184–185, 209–224. 27. Coleman, R.G.; Lee, D.E.; Beatty, L.B.; Brannock, W.W. Eclogites and eclogites: Their differences and similarities. Geol. Soc. Am. Bull. 1965, 76, 483–508. 28. Taylor, L.A.; Neal C.R. Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part I: Mineralogy, petrography, and whole‐rock chemistry. J. Geol. 1989, 97, 551–567. 29. MacGregor, I.D.; Carter, J.L. The chemistry of clinopyroxenes and garnets of eclogite and peridotite xenoliths from the Roberts Victor mine, South Africa. Phys. Earth Planet Int. 1970, 3, 391–397. 30. MaCandless, T.E.; Gurney, J.J. Sodium in garnet and potassium in clinopyroxene: Criteria for classifying mantle eclogites. 4IKC, Proceedings of the Fourth International Kimberlite Conference, Perth, August 10–15, 1986. Kimberlite and Related Rocks Volume 2: Their Mantle/Crust Setting, Diamonds and Diamond Exploration; Published for the Geological Society of Australia Inc. by Blackwell Scientific in Carlton, Vic. 1989, pp. 827–832. 31. Agashev, A.M.; Pokhilenko, L.N.; Pokhilenko, N.P.; Shchukina, E.V. Geochemistry of eclogite xenoliths from the Udachnaya Kimberlite Pipe: Section of ancient oceanic crust sampled. Lithos 2018, 314–315, 187–200. 32. Kamenetsky, V.S.; Kamenetsky, M.B.; Sharygin, V.V.;Faure, K.; Golovin, A.V. Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya‐East kimberlite, Siberia). Chem. Geol. 2007, 237, 384–400. 33. Kamenetsky, V.S.; Kamenetsky, M.B.; Golovin, A.V.; Sharygin, V.V.; Maas, R. Ultrafresh salty kimberlite of the Udachnaya– East pipe (Yakutia, Russia): A petrological oddity or fortuitous discovery? Lithos 2012, 152, 173–186. 34. Kamenetsky, V.S.; Golovin, A.V.; Maas, R.; Giuliani, A.; Kamenetsky, M.B.; Weiss, Y. Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals. Earth Sci. Rev. 2014, 139, 145–167. 35. Pokhilenko, L.N.; Golovin, A.V.; Sharygin, I.S.; Pokhilenko, N.P. Accessory Minerals of Mantle Xenoliths: First Finds of Cl‐free K‐Fe Sulfides. Dokl. Earth Sci. 2011, 440, 1404–1409. 36. Sharygin, I.S.; Golovin, A.V.; Pokhilenko, N.P. Djerfisherite in Kimberlites of the Kuoikskoe field as an indicator of enrichment of Kimberlite melts in chlorine. Dokl. Earth Sci. 2011, 436, 301–307. 37. Korolyuk, V.N.; Lavrent’ev, Yu.G.; Usova, L.V.; Nigmatulina, E.N. JXA‐8100 microanalyzer: Accuracy of analysis of rockforming minerals. Rus. Geol. Geophys. 2008, 49, 165–168. 38. Lavrentev, Y.G.; Karmanov, N.S.; Usova, L.V. Electron probe microanalysis of minerals: Microanalyzer or scanning electron microscope? Rus. Geol. Geophys. 2015, 56, 1154–1161. 39. Norman, M.D.; Pearson, N.J.; Sharma, A.; Griffin, W.L. Quantitative Analysis of Trace Elements in Geological Materials by Laser Ablation ICPMS: Instrumental Operating Conditions and Calibration Values of NIST Glasses. Geostand. Newsl. 1996, 20, 247–261. 40. Whitney, D.L.; Evans, B.W. Abbreviations for names of rock‐forming minerals. Am. Mineral. 2010, 95, 185–187. 41. Available online: https://www.mindat.org/min‐52356.html (accessed on 04.06.2021). 42. Pokhilenko, L.N. Formation Sequence of Different Spinel Species in Megacrystalline Peridotites of the Udachnaya‐East Kimberlite Pipe (Yakutia): Evidence for the Metasomatism of Depleted Mantle. Minerals 2019, 9, 607, doi:10.3390/min9100607. 43. Pokhilenko, N.P.; Agashev, A.M.; Litasov, K.D.; Pokhilenko, L.N. Carbonatite metasomatism of peridotite lithospheric mantle: Implications for diamond formation and carbonatite‐kimberlite magmatism. Rus. Geol. Geophys. 2015, 56, 280–295, doi:10.1016/j.rgg.2015.01.020. 44. Agashev, A.M.; Ionov, D.A.; Pokhilenko, N.P.; Golovin, A.V.; Cherepanova, Yu.; Sharygin, I.S. Metasomatism in lithospheric mantle roots: Constraints from whole‐rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 2013, 160–161, 201–215. 45. McDonough, W.F., Sun, S. The composition of the earth. Chem. Geol. 1995, 120, 223–253. 46. Aoki, K. Origin of phlogopite and potassic‐richteritebearing peridotite xenoliths from South Africa. Contrib. Mineral. Petrol.; 1975, 53, 145–156. 47. Safonov, O.; Butvina, V.; Limanov, E. Phlogopite‐Forming Reactions as Indicators of Metasomatism in the Lithospheric Mantle. Minerals 2019, 9, 685, doi:10.3390/min9110685. 48. Yudin, D.S.; Tomilenko, A.A.; Alifirova, T.A.; Travin, A.V.; Murzintsev, N.G.; Pokhilenko, N.P. Results of40Ar/39Ar Dating of Phlogopites from Kelyphitic Rims around Garnet Grains (Udachnaya‐Vostochnaya Kimberlite Pipe). Dokl. Earth Sci. 2016, 469, 728–731. 49. Brey, G.P. Fictive conductive geotherms beneath the Kaapvaal craton. In Proceedings of the 5th Intern Kimberlite Conference: Extended Abstracts; CPRM: Brasil, Brazil, 1991; pp. 23–25. 50. Becker, H. Petrological constraints on the cooling history of high‐temperature garnet peridotite massifs in lower Austria. Contrib. Mineral. Petrol. 1997, 128, 272–286. 51. Brey, G.P.; Kohler, T.; Nickel, K.G. Geothermobarometry in Four‐phase Lherzolites I. Experimental Results from 10 to 60 kb. J. Petrol 1990, 31, 1313–1352. 52. Brey, G.P.; Kohler, T. Geothermobarometry in four phase Iherzolites II. New thermobarometers. and practical assessment of existing thermobarometers. J. Petrol. 1990, 31, 1352–1378. 53. MacGregor, I.D. The system MgO‐Al2O3‐SiO2: Solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions. Am. Mineral. 1974, 59, 110–119. 54. Finnerty, A.A.; Boyd, F.R. Thermobarometry for garnet‐periodotite xenoliths: A basis for upper‐mantle stratigraphy. In Mantle Xenoliths; Nixon, P.H., Ed.; John Wiley and Sons: New York, NY, USA, 1987; pp. 381–402. 55. O’Neill, H.S.C.; Wood, B.J. An experimental study of Fe‐Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contrib. Mineral. Petrol. 1979, 70, 59–70. 56. Grütter, H.S.; Latti, D.; Menzies A. Cr‐saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry. J. Petrol. 2006, 47, 801–820. 57. Kennedy, C.S.; Kennedy, G.C. The Equilibrium Boundary Between Graphite and Diamond. J. Geophys. Res. 1976, 81, 2467–2470, doi:10.1029/JB08i014p02467. 58. Pollack, H.N.; Chapman, D.S. On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics 1977, 38, 279–296. 59. Vishnevsky, A.A. Kelyphites on garnets in mantle xenoliths and kimberlites: Compositions, genesis, petrological implications. In Extended Abstracts of 5th International Kimberlite Conference, Araxa, Brasilia, June 1991; CRPM: Brasilia, Brazil, 1991; pp. 571– 572. 60. Franz, L.; Brey G.P. Okrusch M., Metasomatic reequilibration of mantle xenoliths from the Gibeon kimberlite province (Namibia). In International Kimberlite Conference: Extended Abstracts; United Institute of Geology, Geophysics and Mineralology, Siberian Branch of Russian Academy of Sciences: Novosibirsk, Russia, 1995; Volume 6, pp. 169–171. 61. Vyshnevsky, О.А. In‐situ kelyphitisation of pyrope inclusion in chromspinel from kimberlites (kimberlite pipe “Pivdenna”, Eastern Pryazovya) Notes Ukr. Mineral. Partnersh. 2009, 6, 107–112. (In Ukrainian) 62. Pokhilenko, N.P.; Sobolev, N.V.; Kuligin, S.S.; Shimizu, N. Peculiarities of distribution of pyroxenite paragenesis garnets in Yakutian kimberlite and some aspects of the Evolution of the Siberian Craton lithospheric mantle. In Proceedings of the 7th International Kimberlite Conference, Cape Town, South Africa, April 1998; Red Roof Design: Cape Town, South Africa, 1999, Volume 2, pp. 689–698. 63. Misra, K.C.; Anand, M.; Taylor, L.A.; Sobolev, N.V. Multi‐stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contrib. Mineral. Petrol. 2004, 146, 696–714. 64. Liu, Y.; Taylor, L.A.; Sarbadhikari, A.B.; Valley, J.W.; Ushikubo, T.; Spicuzza, M.J.; Kita, N.; Ketchum, R.; Carlson, W.; Shatsky, V.S.; Sobolev, N.V. Metasomatic origin of diamonds in the world’s largest diamondiferous eclogite. Lithos 2009, 112, 1014–1024.