Инд. авторы: Сафонова И.Ю., Ханчук А.И.
Заглавие: Субдукционная эрозия на конвергентных окраинах тихоокеанского типа
Библ. ссылка: Сафонова И.Ю., Ханчук А.И. Субдукционная эрозия на конвергентных окраинах тихоокеанского типа // Тихоокеанская геология. - 2021. - Т.40. - № 6. - С.3-19. - ISSN 0207-4028.
Внешние системы: DOI: 10.30911/0207-4028-2021-40-6-3-19; РИНЦ: 47378123;
Реферат: rus: В статье представлен обзор представлений о процессах субдукционной или тектонической эрозии, происходящих на конвергентных окраинах тихоокеанского типа (КОТТ). Рассматриваются понятие термина «тектоническая эрозия», ее причины, факторы и следствия. Приведены примеры на КОТТ Циркум-Пацифики и свидетельства тектонической эрозии на древних КОТТ Палеоазиатского океана (ПАО), сохранившихся в составе Центрально-Азиатского складчатого пояса (ЦАСП). Недавние детальные исследования геологии и стратиграфии современных КОТТ выявило наличие среди них двух контрастных типов: аккретирующих и эродирующих. Аккретирующие КОТТ включают отложения древних аккреционных и фронтальных призм и растут в сторону океана, т.е. глубоководный желоб отступает. Эродирующие КОТТ характеризуются разрушением призмы, сближением желоба и дуги и обычно формируются в случае пологой и быстрой субдукции с участием элементов рельефа океанического дна. Механизм тектонической эрозии включает разрушение океанического слэба, островных дуг, аккреционной призмы, передовой дуги и преддугового клина. Процессы субдукционной эрозии широко проявлены на КОТТ Циркум-Пацифики: Южной и Центральной Америки, желобов Тонга и Нанкай, Аляски. Аккреция и субдукция океанических поднятий вносит вклад в процессы образования, преобразования и разрушения континентальной коры на КОТТ. Эпизоды тектонической эрозии могут быть реконструированы и для древних океанов, например, для ПАО, в результате эволюции и закрытия которого образовался ЦАСП. Во многих орогенах ЦАСП (Алтайский и Тянь-Шанский орогены, восточный Казахстан, Забайкалье, северная Монголия) есть признаки исчезновения больших объемов континентальной коры (дуг). Изучение процессов, приведших не только к образованию, но и к исчезновению больших объёмов корового материала, актуально для реальной оценки природы континентальной коры внутриконтинентальных орогенов, например, ЦАСП, и разработки корректных тектонических моделей.
eng: The paper presents a review of processes of subduction or tectonic erosion at the Pacific-type convergent margins (PTCM) including definition of “tectonic erosion”, its triggers, driving forces and consequences. We review examples of tectonic erosion at the Circum-Pacific PTCMs and at the fossil PTCMs of the Paleo-Asian Ocean (PAO) currently hosted by the Central-Asian Orogenic Belt (CAOB). Recent geological and stratigraphic studies have shown two types of PTCMs: accreting and eroding. Accreting PTCMs consist of older deposits of accretionary and frontal prisms and grow oceanward, i.e. the trench retreats. Eroding PTCMs are characterized by the destruction of the prism, approaching arc and trench and typically form during shallow-angle and fast subduction of an oceanic slab with oceanic floor topographic highs. The mechanism of tectonic erosion includes destruction of oceanic slab, island arcs, accretionary prism, fore-arc and related prism. Tectonic erosion is a common phenomenon at many Circum-Pacific PTCMs, e.g., in South America, Tonga and Nankai troughs, Alaska. Accretion and subduction of oceanic rises contributes greatly to the processes of formation, transformation and destruction of continental crust at PTCM. The episodes of tectonic erosion can be also reconstructed for an ancient ocean, for example, for the PAO, which evolution and suturing formed the CAOB. Many CAOB foldbelts (Altai, Tienshan, eastern Kazakhstan, Transbaikalia, Mongolia) carry signs of disap-pearance of big volumes of continental crust (arcs). Studying processes responsible not only for the formation of continental crust, but also for the disappearance of big volumes of crustal material is important for correct evaluation of the nature of intra-continental orogenic belts, e.g., CAOB, and development of reliable tectonic models.
Ключевые слова: Circum-Pacific; slab topography; Paleo-Asian ocean; конвергентная окраина тихоокеанского типа; тектоническая эрозия; рельеф слэба Циркум-Пацифика; Палеоазиатский океан; tectonic erosion; Pacific-type convergent margin;
Издано: 2021
Физ. характеристика: с.3-19
Цитирование: 1. Буслов М.М., Ватанабе Т. Внутрисубдукционная коллизия и ее роль в эволюции аккреционного клина (на примере Курайской зоны Горного Алтая, центральная Азия) // Геология и геофизика. 1996. Т. 37. С. 82-93. 2. Волкова Н.И., Скляров Е.В. Высокобарические комплексы Центрально-Азиатского складчатого пояса: геологическая позиция, геохимия и геодинамические следствия / Н.И. Волкова, Е.В. Скляров // Геология и геофизика. 2007. Т. 48, № 1. С. 109-119. 3. Волкова Н.И., Ступаков С.И., Бабин Г.А., Руднев С.Н., Монгуш А.А. Подвижность редких элементов при субдукционном метаморфизме (на примере глаукофановых сланцев Куртушибинского хребта, Западный Саян) // Геохимия. 2009. С. 4401-414. 4. Геодинамика, магматизм и металлогения Востока России. В 2-х кн. / Под ред. А.И. Ханчука. Владивосток: Дальнаука, 2006. Кн. 1. 572 с. 5. Голозубов В.В., Ханчук А.И. Хейлунцзянский комплекс - фрагмент юрской аккреционной призмы в тектонических окнах перекрывающей континентальной плиты: модель плоской субдукции // Тихоокеан. геология. 2021. Т. 40, № 4. С. 3-17. 6. Сафонова И.Ю., Перфилова А.А., Обут О.Т., Савинский И.А., Чёрный Р.И., Петренко Н.А., Гурова А.В., Котлер П.Д., Хромых С.В., Кривоногов С.К., Маруяма Ш. Итмурундинский аккреционный комплекс (северное Прибалхашье): геологическое строение, стратиграфия и тектоническое происхождение // Тихоокеан. геология. 2019. Т. 38, № 3. С. 102-117. 7. Ханчук А.И., Кемкин И.В., Панченко И.В. Геодинамическая эволюция юга Дальнего Востока в среднем палеозое -раннем мезозое // Тихоокеанская окраина Азии. Геология. 1989. С. 218-255. 8. Ярмолюк В.В., Кудряшова Е.А., Козловский А.М., Саватенков В.М. Позднемеловой-раннекайнозойский вулканизм Южной Монголии - след Южно-Хангайской горячей точки мантии // Вулканология и сейсмология. 2007. № 1. С. 3-31. 9. Ярмолюк В.В., Ковач В.П., Козаков И.К. Механизмы формирования континентальной коры Центрально-Азиатского складчатого пояса // Геотектоника. 2012. № 4. С. 3-27. 10. Antonijevic S.K., Wagner L.S., Kumar A., Beck S.L., Long M.D., Zandt G., Tavera H., Condori C. The role of ridges in the formation and longevity of flat slabs // Nature. 2015. V. 524. P. 212-215. 11. Balance P.F., Scholl D.W., Vallier T.L., Herzer R.H. Subduction of a late Cretaceous seamount of the Louisville Ridge at the Tonga Trench: A model of normal and accelerated tectonic erosion // Tectonics. 1989. V. 8. P. 853-962. 12. Bangs N.L.B., Gulick S.P.S., Shipley T.H. Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone // Geol. Soc. Amer. 2006. V. 34. P. 701-704. 13. Ben-Avraham Z., Nur A., Jones D., Cox A. Continental accretion and orogeny: from oceanic plateaus to allochthonous terranes // Sci. 1981. V. 213. P. 47-54. 14. Betts P.G., Moresi L., Miller M.S., Willis D. Geodynamics of oceanic plateau and plume head accretion and their role in phanerozoic orogenic systems of China // Geosci. Front. 2015. V. 6, N 1. P. 49-59. 15. Bialas R.W., Funiciello F., Faccenna C. Subduction and exhumation of continental crust: insights from laboratory models // Geophys. J.l Intern. 2011. V. 184. P. 43-64. 16. Bourgois J., Martin H., Lagabrielle Y., Le Moine J., Fritos Jara J. Subduction erosion related to spreading-ridge subduction: Taitao Peninsula (Chile margin triple junction area) // Geology. 1996. V. 24. P. 723-726. 17. Buslov M.M., Safonova I.Yu., Watanabe T., Obut O., Fujiwara Y., Iwata K., Semakov N.N., Sugai Y., Smirnova L.V., Kazansky A.Yu. Evolution of the Paleo-Asian Ocean (Altai- 410, Sayan region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent // Geosci. J. 2001. V. 5. P. 203-224. 18. Clift P.D., Vannucchi P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust // Rev. Geophys. 2004. V. 42. RG2001. 19. Clift P.D., Vannucchi P., Morgan J.P. Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust // Earth-Sci. Rev. 2009. V. 97. P. 80-104. 20. Cloos M., Shreve R.L. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description // Pure and Applied Geophys. 1988. V. 128. P. 456-500. 21. Cloos M., Shreve R.L. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and discussion // Pure and Applied Geophys. 1988. V. 128. P. 501-545. 22. Degtyarev K.E., Luchitskaya M.V., Tretyakov A.A., Pilitsyna A.V., Yakubchuk A.S. Early Paleozoic suprasubduction complexes of the North Balkhash ophiolite zone (Central Kazakhstan): Geochronology, geochemistry and implications for tectonic evolution of the Junggar-Balkhash Ocean // Lithos. 2021. V. 105818. 23. Dobretsov N.L., Berzin N.A., Buslov M.M. Opening and tectonic evolution of the Paleo-Asian Ocean // Intern. Geol.Rev. 1995. V. 37. P. 335-360. 24. Dobretsov N.L., Buslov M.M., Vernikovsky V.A. Neoproterosoic to Early Ordovician evolution of the Paleo-Asian Ocean: implications to the break-up of Rodinia // Gondwana Research. 2003. V. 6. P. 143-159. 25. Dobretsov N.L., Buslov M.M., Safonova I.Yu., Kokh D.A. Fragments of oceanic islands in the Kurai and Katun' accretionary wedges of Gorny Altai // Russian Geology and Geophysics. 2004. V. 45. P. 1381-1403. 26. Fujisaki W., Isozaki Y., Maki K., Sakata S., Hirata T., Maruyama S. Age spectra of detrital zircon of the Jurassic clastic rocks of the Mino-Tanba AC belt in SW Japan: Constraints to the provenance of the mid-Mesozoic trench in East Asia // J. Asian Earth Sci. 2014. V. 88. P. 62-73. 27. Grebennikov A., Khanchuk A. Pacific-type transform and convergent margins: igneous rocks, geochemical contrasts and discriminant diagrams // Intern. Geol. Review. 2021. V. 63. P. 601-629. 28. Gutscher M., Spakman W., Bijwaard H., Engdahl E.R. Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin // Tectonics. 2000. V. 19, N 5. P. 814-833. 29. Hampel A., Kukowski N., Bialas J., Huebscher C., Heinbockel R. Ridge subduction at an erosive margin: the collision zone of the Nazca Ridge in southern Perú // J. Geophys. Res. 2004. V. 109. P. 1-19. 30. Hilde T.W.C., Fisher R.L. Graben structure and axial zone tectonics of Tonga trench, Southwest Pacific // XVII General Assembly of the International Union for Geodesy and Geophysics, Canberra, 1979. V. 17. 18. 31. Hilde T.W.C. Sediment subduction versus accretion around the Pacific // Tectonophysics. 1983. V. 99. P. 381-397. 32. Isozaki Y., Maruyama S., Fukuoka F. Accreted oceanic materials in Japan // Tectonophysics. 1990. V. 181. P. 179-205. 33. Isozaki Y., Maruyama S. Studies on orogeny based on plate tectonics in Japan and new geotectonic subdivision of the Japanese Islands // J. Geography. 1991. V. 100. P. 697-761 (in Japanese with English abstr. and captions). 34. Isozaki Y. Contrasting two types of orogens in Permo-Triassic Japan: accretionary versus collisional // Island Arc. 1997. V. 6. P. 2-24. 35. Isozaki Y., Aoki K., Nakama T., Yanai S. New insight into a subduction-related orogeny: Re-appraisal on geotectonic framework and evolution of the Japanese Islands // Gondwana Research. 2010 V. 18. P. 82-105. 36. Isozaki Y., Zhao D. Tomo-topo-geologic aspect of an erosive margin: NE Japan case // Japan Geoscience Union Meeting. 2018. Abstract SCG56-01. https://confit.atlas.jp/guide/event/jpgu2018/subject/SCG56-01/advanced 37. Jahn B., Wu F., Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic // Transactions of the Royal Society of Edinburgh. 2000. V. 91. P. 181-193. 38. Jahn B.-M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Aspects of the tectonic evolution of China / J. Malpas, C.J.N. Fletcher, J.R. Ali, J.C. Aitchison (Eds.) // Geol. Soc., London, Spec. Publ. 2004. V. 226, P. 73-100. 39. Kawai K., Yamamoto S., Tsuchiya T., Maruyama S. The second continent: existence of granitic continental materials around the bottom of the mantle transition zone // Geosci. Front. 2013. V. 4. P. 1-6. 40. Kay S.M., Godoy E., Kurtz A. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes // Bull. Geol. Soc. Am. 2005. V. 117. P. 67-88. 41. Kellogg L.H., Hager B.H., van der Hilst R.D. Compositional stratifi cation in the deep mantle // Sci. 1999. V. 283. P. 1881-1884. 42. Khanchuk A.I., Kemkin I.V., Kruk N.N. The Sikhote-Alin orogenic belt, Russian South East: terranes and the formation of continental lithosphere based on geological and isotopic data // J. Asian Earth Sci. 2016. V. 120. P. 117-138. 43. Kovalenko V.I., Yarmolyuk V.V., Kovach V.P., Kotov A.B., Kozakov I.K., Salnikova E.B., Larin A.M. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence // J. Asian Earth Sci. 2004. V. 23, N 5. P. 605-627. 44. Kröner A., Windley B., Badarch G., Tomurtogoo O., Hegner E., Jahn B.M., Gruschka S., Khain E.V., Demoux A., Wingate M.T.D. Accretionary growth and crust formation in the Central Asian orogenic belt and comparison with the Arabian-Nubian shield / R.D. Hatcher, M.P. Carlson, J.H. McBride, J.R. Martinez Catalan (Eds.) // Framework of continental crust. Geol. Soc. Amer. Memoir. 2007. V. 200. P. 181-209. 45. Kröner A., Lehmann J., Schulmann K., Demoux A., Lexa O., Tomurhuu D., Stipská P., Liu D.Y., Wingate M.T.D. Lithostratigraphic and geochronological constraints on the evolution of the Central Asian orogenic belt in SW Mongolia: Early Paleozoic rifting followed by late Paleozoic accretion // Amer. J. Sci. 2010. V. 310. P. 523-574. 46. Kröner A., Kovach V., Belousova E., Hegner E., Armstrong R., Dolgopolova A., Seltmann R., Alexeiev D.V., Hofmann J.E., Wong J., Sun M., Cai K., Wang T., Tong Y., Wilde S.A., Degtyarev K.E., Rytsk E. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt // Gondwana Research. 2014. V. 25. P. 103-125. 47. Kröner A., Kovach V., Alexeiev D., Wang K.-L., Wong J., Degtyarev K., Kozakov I. No excessive crustal growth in the Central Asian Orogenic Belt: Further evidence from field relationships and isotopic data // Gondwana Research. 2017. V. 50. P. 135-166. 48. Martínez-Loriente S., Sallarès V., Ranero C.R., Ruh J.B., Barckhausen U., Grevemeyer I., Bangs N. Influence of incoming plate relief on overriding plate deformation and earthquake nucleation: Cocos Ridge subduction (Costa Rica) // Tectonics. 2019. V. 38. P. 4360-4377. 49. Maruyama S. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed // Island Arc. 1997. V. 6, N 1. P. 91-120. 50. Maruyama S., Santosh M., Zhao D. Superplume, supercontinent, and post-perovskite: Mantle dynamics and anti-plate tectonics on the Core-Mantle Boundary // Gondwana Research. 2007. V. 11. P. 7-37. 51. Maruyama S., Hasegawa A., Santosh M., Kogiso T., Omori S., Nakamura H., Kawai K., Zhao D. The dynamics of big mantle wedge, magma factory and metamorphic-metasomatic factory in subduction zones // Gondwana Research. 2009. V. 16. P. 141-430. 52. Maruyama S., Kawai T., Windley B.F. Ocean plate stratigraphy and its imbrication in an accretionary orogen: the Mona Complex, Anglesey-Lleyn, Wales, UK / Kusky T.M., 425 Zhai M-G., Xiao W. (Eds.) // The evolving continents: understanding processes of continental growth. Geol. Soc., London, Spec.Publ. 2010. V. 338. P. 55-75. 53. Maruyama S., Omori S., Sensu H., Kawai K., Windley B.F. Pacific-type orogens: New concepts and variations in space and time from present to past // J. Geography. 2011. V. 120. P. 115-223. (in Japanese with English abstract and captions). 54. Maruyama S., Safonova I. Orogeny and mantle dynamics: role of tectonic erosion and second continent in the mantle transition zone. Novosibirsk State Univ. Novosibirsk: IPC NSU, 2019. 208 p. 55. Nakajima T. The Ryoke plutono-metamorphic belt: crustal section of the Cretaceous Eurasian continental margin // Lithos. 1994. V. 33. P. 51-66. 56. Ota T., Utsunomiya A., Uchio Yu., Isozaki Y., Buslov M., Ishikawa A., Maruyama S., Kitajima K., Kaneko Y., Yamamoto H., Katayama I. Geology of the Gorny Altai subduction accretion complex, southern Siberia: Tectonic evolution of a Vendian-Cambrian intra-oceanic arc // J. Asian Earth Sci. 2007. V. 30. P. 666-695. 57. Ranero C.R., von Huene R, Subduction erosion along the Middle America convergent margin // Nature. 2000. V. 404. P. 748-752. 58. Rosenbaum G., Mo W. Tectonic and magmatic responses to the subduction of high bathymetric relief // Gondwana Research. 2011. V. 19, N 3. P. 571-582. 59. Safonova I.Y., Utsunomiya A., Kojima S., Nakae S., Tomurtogoo O., Filippov A.N., Koizumi K. Pacific superplume-related oceanic basalts hosted by accretionary complexes of Central Asia, Russian Far East and Japan // Gondwana Research. 2009. V. 16, N 3-4. P. 587-608. 60. Safonova I., Maruyama S. Asia: a frontier for a future supercontinent Amasia // Intern. Geol. Rev. 2014. V. 59. P. 1051-1071. 61. Safonova I., Maruyama S., Litasov K. Generation of hydrous-carbonate plumes in the mantle transition zone linked to tectonic erosion and subduction // Tectonophysics. 2015. V. 662. P. 454-471. 62. Safonova I., Maruyama S., Kojima S., Komiya T., Krivonogov S., Koshida K. Recognizing OIB and MORB in accretionary complexes: a new approach based on ocean plate stratigraphy, petrology, and geochemistry // Gondwana Research. 2016. V. 33. P. 92-114. 63. Safonova I.Y. Juvenile versus recycled crust in the Central Asian Orogenic Belt: Implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs // Gondwana Research. 2017. V. 47. P. 6-27. 64. Safonova I., Kotlyarov A., Krivonogov S., Xiao W. Intra-oceanic arcs of the Paleo-Asian Ocean // Gondwana Research. 2017. V. 50. P. 167-194. 65. Safonova I., Savinskiy I., Perfilova A., Gurova A., Maruyama S., Tsujimori T. The Itmurundy Pacific-type orogenic belt in northern Balkhash, central Kazakhstan: Revisited plus first U-Pb age, geochemical and Nd isotope data from igneous rocks // Gondwana Research. 2020. V. 79. P. 49-69. 66. Scholl D.W., von Huene R. Crustal recycling at modern subduction zones applied to the past - Issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction // Geol. Soc. Am. Memoirs. 2007. V. 200. P. 9-32. 67. Senshu H., Maruyama S., Rino S., Santosh M. Role of tonalite-trodhjemitegranite (TTG) crust subduction on the mechanism supercontinent breakup // Gondwana Research. 2009. V. 15. P. 433-442. 68. Stern C.R. Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle // Gondwana Research. 2011. V. 20. P. 284-308. 69. Stern R. The anatomy and ontogeny of modern intra-oceanic arc systems / T.M. Kusky, M.-G. Zhai, W. Xiao (Eds.) // The evolving continents: understanding processes of continental growth. Geol. Soc. London, Spec. Publ. 2010. V. 338. P. 7-34. 70. Stern R.J., Scholl D.W. Yin and Yang of continental crust creation and destruction by plate tectonic processes // Intern. Geol. Rev. 2010. V. 52. P. 1-31. 71. Van der Hilst R.D., Karason H. Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: toward a hybrid convection model // Sci. 1999. V. 283. P. 1885-1888. 72. Vannucchi P., Morgan J.P., Silver E.A., Kluesner J.W. Origin and dynamics of depositionary subduction margins // Geochemistry, Geophysics, Geosystems. 2016. V. 17. P. 1966-1974. 73. Von Huene R., Uyeda S. A summary of results from the IPOD active margin transects across the Japan, Mariana, and Mid-American convergent margins // Oceanologica Acta 4 (Supplementary), Colloque C3. 26th Geological Congress, Paris. 1981. P. 233-239. 74. Von Huene R., Scholl D.W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust // Rev. Geophys. 1991. V. 29, N 3. P. 279-316. 75. Von Huene R., Ranero C.R., Weinrebe W., Hinz K. Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism // Tectonics. 2000. V. 19. P. 314-334. 76. Von Huene R., Ranero C.R. Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile // J. Geophys. Res. 2003. V. 108, N. B2. 2079. 77. Von Huene R., Ranero C.R., Watts P. Tsunamigenic slope failure along the Middle America Trench in two tectonic settings // Marine Geol. 2004. V. 203. P. 303-317. 78. Wells R.E., Blakely R.J., Sugiyama Y., Scholl D.W., Dinterman P. Basin centered asperities in great subduction zone earthquakes - A link between slip, subsidence, and subduction erosion? // J. Geophys. Res. 2003. V. 108. 2507. 79. Windley B.F., Alexeiev D., Xiao W., Kröner A., Badarch G. Tectonic models for accretion of the Central Asian Orogenic Belt // J. Geol. Soc. London. 2007. V. 164. P. 31-47. 80. Yamamoto S., Senshu H., Rino S., Omori S., Maruyama S. Granite subduction: arc subduction, tectonic erosion and sediment subduction // Gondwana Research. 2009. V. 15. P. 443-453. 81. Ye K., Cong B.L., Ye D.N. The possible subduction of continental material to depths greater than 200 km // Nature. 2000. V. 407. P. 734-736. 82. Zhang D., Liu Y-J., Li W-M., Li S-Z., Iqbal M.Z., Chen Z-X. Marginal accretion processes of Jiamusi Block in NE China: Evidences from detrital zircon U-Pb age and deformation of the Wandashan Terrane // Gondwana Research. 2020. V. 78. P. 92-109. 83. Zhao D., Ohtani E. Deep slab subduction and dehydration and their geodynamic consequences: Evidence from seismology and mineral physics // Gondwana Research. 2009. V. 16. P. 401-413. 84. Zonenshain L.P., Kuzmin M.I., Natapov L.M. Geology of the USSR: A Plate tectonic synthesis // Geodynamic Monograph Series. Washington: Amer. Geophys. Union. 1990. P. 242.