Инд. авторы: | Скляров Е.В., Лавренчук А.В., Мазукабзов А.М. |
Заглавие: | Мраморный меланж: вариации состава и механизмы образования |
Библ. ссылка: | Скляров Е.В., Лавренчук А.В., Мазукабзов А.М. Мраморный меланж: вариации состава и механизмы образования // Геодинамика и тектонофизика. - 2021. - Т.12. - № 4. - С.805-825. - EISSN 2078-502X. |
Внешние системы: | DOI: 10.5800/GT-2021-12-4-0556; РИНЦ: 47339504; |
Реферат: | rus: В пределах Ольхонского террейна (Западное Прибайкалье) выделены и охарактеризованы четыре типа «мраморно-силикатных смесей», для которых мы используем термин «меланж»: инъекционный (протрузивный), метаморфогенно-разлинзованный, инъекционно-минглинговый и мраморные тектониты. Для инъекционного (протрузивного) типа меланжа характерны проявления, занимающие значительные площади и не имеющие в плане отчетливой линейной (пластовой) конфигурации, в качестве включений в карбонатном матриксе всегда находятся фрагменты силикатных пород, присутствующих в ближайшем окружении. Метаморфогенно-разлинзованный тип меланжа характеризуется присутствием фрагментов диопсидитов и тремолит-диопсидовых пород в доломитовом или кальцит-доломитовом матриксе. Его образование объясняется тектоно-метаморфическим преобразованием кварцевых песчаников неопротерозойских осадков пассивной окраины Сибирского кратона. Инъекционно-минглинговый тип меланжа представлен жильными телами кальцитовых мраморов или карбонатно-силикатных пород (кальцифиров) с разноразмерными фрагментами метаморфизованных долеритов и гранитов. Они образовались в результате внедрения порций карбонатного и силикатного расплавов с последующим фрагментированием закристаллизовавшихся раньше силикатных пород. Мраморные тектониты фиксируют позднюю стадию инъекционного внедрения мраморов в вязкопластическом состоянии, локализуясь в узких зонах в пределах мраморного меланжа. eng: The Olkhon terrane in the Western Baikal area accommodates four types of carbonate-silicate mixtures: injection (protrusion), metamorphic-boudinated, mingling, and tectonite marble mélange. The outcrops of injection mélange consist of a carbonate matrix with inclusions of native silicic rocks found in the immediate vicinities, commonly cover large areas and lack any distinct linearity in the map view. Mélange of the metamorphic boudinage type comprises diopsidite and tremilote-diopsidite fragments in a dolomitic or calcite-dolomitic matrix. Its origin is apparently due to tectonism and related metamorphism of quartz sandstones in Neoproterozoic strata on the passive margin of the Siberian craton. Mingling mélange appears as calcite marble or carbonate-silicate (calciphyre) veins with metadolerite and granite inclusions of different sizes. The veins formed by intrusion of carbonate and silicate melt batches and subsequent fragmentation of silicate rocks that crystallized earlier. Marble tectonites localized in narrow zones record the late phase of ductile marble injection. |
Ключевые слова: | метаморфизм; Сдвиговый тектогенез; Ольхонский террейн; мрамор; меланж; Olkhon terrane; deformation; metamorphism; strike-slip tectonics; marble; mélange; деформации; |
Издано: | 2021 |
Физ. характеристика: | с.805-825 |
Цитирование: | 1. Belostotsky I.I., 1967. Tectonic Nappes in Dinarides of the Devola River Basin. Geotectonics 6, 25-48 (in Russian) [Белостоцкий И.И. Тектонические покровы в бассейне р. Девола в динаридах // Геотектоника. 1967. № 6. С. 25-48]. 2. Burkhard M., 1993. Calcite Twins, Their Geometry, Appearance and Significance as Stress-Strain Markers and Indicators of Tectonic Regime: A Review. Journal of Structural Geology 15 (3-5), 351-368. https://doi.org/10.1016/0191-8141(93)90132-T. 3. Buslov M.M., 2011. Tectonics and Geodynamics of the Central Asian Foldbelt: The Role of Late Paleozoic Large-Amplitude Strike-Slip Faults. Russian Geology and Geophysics 52 (1), 52-71. https://doi.org/10.1016/j.rgg.2010.12.005. 4. Buslov M.M., 2014. Terrane Tectonics of the Central Asian Orogenic Belt. Geodynamics & Tectonophysics 5 (3), 641-665 (in Russian) [Буслов М.М. Террейновая тектоника Центрально-Азиатского складчатого пояса // Геодинамика и тектонофизика. 2014. Т. 5. № 3. С. 641-665]. https://doi.org/10.5800/GT-2014-5-3-0147. 5. Dobretsov N.L., Buslov M.M., 2007. Late Cambrian-Ordovician Tectonics and Geodynamics of Central Asia. Russian Geology and Geophysics 48 (1), 71-82. https://doi.org/10.1016/j.rgg.2006.12.006. 6. Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., Sklyarov E.V., Cho M., Sergeev S.A., Demonterova E.I., Mazukabzov A.M., Lepekhina E.N., Cheong W., Kim J., 2017. Pre-collisional (>0.5 Ga) Complexes of the Olkhon Terrane (Southern Siberia) as an Echo of Events in the Central Asian Orogenic Belt. Gondwana Research 42, 243-263. https://doi.org/10.1016/j.gr.2016.10.016. 7. Donskaya T.V., Sklyarov E.V., Gladkochub D.P., Mazukabzov A.M., Sal'nikova E.B., Kovach V.P., Yakovleva S.Z., Berezhnaya N.G., 2000. The Cis-Baikal Collisional Metamorphic Belt. Doklady Earth Sciences 374 (7), 1075-1079 (in Russian) [Донская Т.В., Скляров Е.В., Гладкочуб Д.П., Мазукабзов А.М., Сальникова Е.Б., Ковач В.П., Яковлева С.З., Бережная Н.Г. Прибайкальский коллизионный метаморфический пояс // Доклады РАН. 2000. Т. 374. № 7. С. 1075-1079]. 8. Doroshkevich A., Sklyarov E., Starikova A., Vasiliev V., Ripp G., Izbrodin I., Posokhov V., 2017. Stable Isotope (C, O, H) Characteristics and Genesis of the Tazheran Brucite Marbles and Skarns, Olkhon Region, Russia. Mineralogy and Petrology 111, 399-416. https://doi.org/10.1007/s00710-016-0477-8. 9. Eskin A.S., Ez V.V., Grabkin O.V., Letnikov F.A., Melnikov A.B., Morozov Yu.A., Shkandry B.O., 1979. Correlation of Deep-Seated Processes in the Precambrain Metamorphic Complexes of the Baikal Area. Nauka, Novosibirsk, 118 p. (in Russian) [Ескин A.C., Эз В.В., Грабкин О.В., Летников Ф.А., Мельников А.И., Морозов Ю.А., Шкандрий Б.О. Корреляция эндогенных процессов в метаморфических комплексах докембрия Прибайкалья. Новосибирск: Наука, 1979. 118 с.]. 10. Fanelli M.T., Cava N., Wyllie P.J., 1986. Calcite and Dolomite without Portlandite at a New Eutectic in CaO-MgO-CO2-H2O with Applications to Carbonatites. In: Morphology and Phase Equilibria of Minerals. Proceedings of the 13th General Meeting of the International Mineralogical Association (September 19-25, 1982, Varna). Bulgarian Academy of Science, Sofia, Bulgaria, p. 313-322. 11. Fedorovsky V.S., Dobrzhinetskaya L.F., Molchanova T.V., Likhachev A.B., 1993. A New Type of Melange (Baikal, Ol'khon Region). Geotectonics 4, 30-45 (in Russian) [Федоровский В.С., Добржинецкая Л.Ф., Молчанова Т.В., Лихачев А.Б. Новый тип меланжа (Байкал, Ольхонский регион) // Геотектоника. 1993. Т. 27. № 4. С. 30-45]. 12. Fedorovsky V.S., Mazukabzov A.M., Sklyarov E.V., Gladkochub D.P., Donskaya T.V., Lavrenchuk A.V., Agatova A.R., Kotov A.B., 2012. Aerospace Geological Map South-West Part of Chernorud and Tomota Zone of Olkhon Region (Lake Baikal). A1TIS Group, Moscow. 13. Fedorovsky V.S., Sklyarov Е.V., 2010. The Olkhon Geodynamic Proving Ground (Lake Baikal): High-Resolution Satellite Data and Geological Maps of New Generation. Geodynamics & Tectonophysics 1 (4), 331-418 (in Russian) [Федоровский В.С., Скляров Е.В. Ольхонский геодинамический полигон (Байкал): аэрокосмические данные высокого разрешения и геологические карты нового поколения // Геодинамика и тектонофизика. 2010. Т. 1. № 4. С. 331-418]. https://doi.org/10.5800/GT-2010-1-4-0026. 14. Fedorovsky V.S., Sklyarov E.V., Gladkochub D.P., Mazukabzov A.M., Donskaya T.V., Lavrenchuk A.V., Starikova A.E., Dobretsov N.L., Kotov A.B., Tevelev Ark.V., 2017. Aerospace Geological Map of the Olkhon Region (Baikal, Russia). Copymaster Center, Moscow. 15. Fedorovsky V.S., Sklyarov E.V., Gladkochub D.P., Mazukabzov A.M., Donskaya T.V., Lavrenchuk A.V., Starikova A.E., Dobretsov N.L., Kotov A.B., Tevelev Ark.V., 2020. Collision System of West Pribaikalie: Aerospace Geological Map of Olkhon Region (Baikal, Russia). Geodynamics & Tectonophysics 11 (3), 447-452 (in Russian) [Федоровский В.С., Скляров Е.В., Гладкочуб Д.П., Мазукабзов А.М., Донская Т.В., Лавренчук А.В., Старикова А.Е., Добрецов Н.Л., Котов А.Б., Тевелев Арк.В. Коллизионная система Западного Прибайкалья: Аэрокосмическая геологическая карта Ольхонского региона (Байкал, Россия) // Геодинамика и тектонофизика. 2020. Т. 11. № 3. С. 447-452]. https://doi.org/10.5800/GT-2020-11-3-0485. 16. Fedorovsky V.S., Sklyarov E.V., Izokh A.E., Kotov A.B., Lavrenchuk A.V., Mazukabzov A.M., 2010. Strike-Slip Tectonics and Subalkaline Mafic Magmatism in the Early Paleozoic Collisional System of the Western Baikal Region. Russian Geology and Geophysics 51 (5), 534-547. https://doi.org/10.1016/j.rgg.2010.04.009. 17. Fedorovsky V.S., Sklyarov E.V., Mazukabzov A.M., Kotov A.B., Kargopolov S.A., Lavrenchuk A.V., Starikova A.E., 2009. Geological Map of the Tazheran Massif (Baikal). Scale 1:100000. A1TIS Group, Moscow (in Russian) [Федоровский В.С., Скляров Е.В., Мазукабзов А.М., Котов А.Б., Каргополов С.А., Лавренчук А.В., Старикова А.Е. Геологическая карта массива Тажеран (Байкал). Масштаб 1:100000. М.: Группа компаний А1TIS, 2009]. 18. Fedorovsky V.S., Vladimirov A.G., Khain E.V., Kargopolov S.A., Gibsher A.S., Izokh A.E., 1995. Tectonics, Metamorphism, and Magmatism of Collision Zones in Early Paleozoic Orogenic Complexes of Central Asia. Geotectonics 3, 3-22 (in Russian) [Федоровский В.С., Владимиров А.Г., Хаин Е.В., Каргополов С.А., Гибшер А.С., Изох А.Э. Тектоника, метаморфизм и магматизм коллизионных зон каледонид Центральной Азии // Геотектоника. 1995. Т. 29. № 3. С. 3-22]. 19. Gladkochub D.P., Donskaya T.V., Wingate M.T.D., Poller U., Krӧner A., Fedorovsky V.S., Mazukabzov A.M., Todt W., Pisarevsky S.A., 2008. Petrology, Geochronology, and Tectonic Implications of c. 500 Ma Metamorphic and Igneous Rocks along the Northern Margin of the Central-Asian Orogen (Olkhon Terrane, Lake Baikal, Siberia). Journal of the Geological Society 165, 235-246. https://doi.org/10.1144/0016-76492006-125. 20. Great Russian Encyclopedia, 2012. Bolshaya Rossiiskaya Entsiklopedia Publishing House, Moscow, Vol. 19. 766 p. (in Russian) [Большая Российская Энциклопедия. М.: Научное изд-во "Большая Российская энциклопедия", 2012. Т. 19. 766 с.]. 21. Greenly E., 1919. The Geology of Anglesey. Memoirs of the Geological Survey of Great Britain. England and Wales. Vol. 1, 520 p. 22. Hsu K.J., 1968. Principles of Mélanges and Their Bearing on the Franciscan-Knoxville Paradox. Geological Society America Bulletin 79 (8), 1063-1074. https://doi.org/10.1130/0016-7606(1968)79[1063:POMATB]2.0.CO;2. 23. Khomentovsky V.V., Shenfil V.Yu., Yakshin M.S., 1972. Reference Cross-Sections of the Upper Precambrian and Lower Cambrian Deposits of the Southern Margin of the Siberian Platform. Nauka, Moscow, 356 p. (in Russian) [Хоментовский В.В., Шенфиль В.Ю., Якшин М.С. Опорные разрезы отложений верхнего докембрия и нижнего кембрия южной окраины Сибирской платформы. М.: Наука, 1972. 356 с.]. 24. Knipper A.K., 1971. History of Serpentinite Mélange in the Lesser Caucasus. Geotectonics 6, 87-101 (in Russian) [Книппер А.Л. История развития серпентинитового меланжа Малого Кавказа // Геотектоника. 1971. № 6. С. 87-101]. 25. Konev A.A., Samoilov V.S., 1974. Contact Metamorphism and Metasomatism in the Aureole of the Tazheran Alkaline Intrusion. Novosibirsk, Nauka, 246 p. (in Russian) [Конев А.А., Самойлов В.С. Контактовый метаморфизм и метасоматоз в ореоле Тажеранской щелочной интрузии. Новосибирск: Наука, 1974. 246 с.]. 26. Lavrenchuk A.V., Sklyarov E.V., Izokh A.E., Kotov A.B., Sal'nikova E.B., Fedorovsky V.S., Mazukabzov A.M., 2017. Compositions of Gabbro Intrusions in the Krestovsky Zone (Western Baikal Region): A Record of Plume-Suprasubduction Mantle Interaction. Russian Geology and Geophysics 58 (10) 1139-1153. https://doi.org/10.1016/j.rgg.2017.09.001. 27. Lentz D.R., 1999. Carbonatite Genesis: A Reexamination of the Role of Intrusion-Related Pneumatolytic Skarn Processes in Limestone Melting. Geology 27 (4), 335-338. https://doi.org/10.1130/0091-7613(1999)027%3C0335:CGAROT%3E2.3.CO;2. 28. Pavlovsky E.V., Eskin A.S., 1964. Archean Rocks in the Baikal Region: Composition and Structure. Nauka, Moscow, 128 p. (in Russian) [Павловский Е.В., Ескин А.C. Особенности состава и структуры архея Прибайкалья. М.: Наука, 1964. 128 c.]. 29. Sklyarov E.V. (Ed.), 2005. Structural and Tectonic Correlation across the Central Asia Orogenic Collage: North-Eastern Segment. Guidebook and Abstract Volume of the Siberian Workshop IGCP480: Irkutsk - Ulan-Ude, Russia, July 25 - August 6, 2005. IEC SB RAS, Irkutsk, 291 p. 30. Sklyarov E.V., Fedorovsky V.S., Kotov A.B., Lavrenchuk A.V., Mazukabzov A.M., Levitsky V.I., Sal'nikova E.B., Starikova A.E. et al., 2009. Carbonatites in Collisional Settings and Pseudo-Carbonatites of the Early Paleozoic Ol'khon Collisional System. Russian Geology and Geophysics 50 (12), 1091-1106. https://doi.org/10.1016/j.rgg.2009.11.008. 31. Sklyarov E.V., Fedorovsky V.S., Kotov A.B., Lavrenchuk A.V., Mazukabzov A.M., Starikova A.E., Yakovleva S.Z., Anisimova I.V., Fedoseenko A.M., 2013a. Carbonate and Silicate-Carbonate Injection Complexes in Collision Systems: The West Baikal Region as an Example. Geotectonics 47 (3), 180-196. https://doi.org/10.1134/S0016852113020064. 32. Sklyarov E.V., Fedorovsky V.S., Lavrenchuk A.V., Starikova A.E., Kotov A.B., Mazukabzov A.M., 2013b. Aerospace Geological Map of Anga - Begul Interfluve (Baikal). The Right Anga Zone. Copymaster Center, Moscow. 33. Sklyarov E.V., Fedorovsky V.S., Mazukabzov A.M., Gladkochub D.P., Donskaya T.V., Lavrenchuk A.V., Starikova A.E., Agatova A.R., Kotov A.B., 2012. Aerospace Geological Map of South-West Part of the Olkhon Region (Lake Baikal). Krestovsky - Shirokaya Zone. A1TIS Group, Moscow. 34. Sklyarov E.V., Lavrenchuk A.V., Doroshkevich A.G., Starikova A.E., Kanakin S.V., 2021. Pyroxenite as a Product of Mafic-Carbonate Melt Interaction (Tazheran Massif, West Baikal Area, Russia). Minerals 11 (6), 654. https://doi.org/10.3390/min11060654. 35. Sklyarov E.V., Lavrenchuk A.V., Fedorovsky V.S., Gladkochub D.P., Donskaya T.V., Kotov A.B., Mazukabzov A.M., Starikova A.E., 2020. Regional, Contact Metamorphism, and Autometamorphism of the Olkhon Terrane (West Baikal Area). Petrology 28 (1), 47-61. https://doi.org/10.1134/S0869591120010051. 36. Starikova A.E., Sklyarov E.V., Kotov A.B., Salnikova E.B., Fedorovskii V.S., Lavrenchuk A.V., Mazukabzov A.M., 2014. Vein Calciphyre and Contact Mg Skarn from the Tazheran Massif (Western Baikal Area, Russia): Age and Genesis. Doklady Earth Sciences 457, 1003-1007. https://doi.org/10.1134/S1028334X14080182. 37. Volkova N.I., Vladimirov A.G., Travin A.V., Mekhonoshin A.S., Khromykh S.V., Yudin D.S., Rudnev S.N., 2010. U-Pb Isotopic Dating of Zircons (SHRIMP-II) from Granulites of the Ol'khon Region of Western Baikal Area. Doklady Earth Sciences 432, 821-824. https://doi.org/10.1134/S1028334X10060243. 38. Wyllie P.J., Tuttle O.F., 1960. The System CaO-CO2-H2O and the Origin of Carbonatites. Journal of Petrology 1 (1), 1-46. https://doi.org/10.1093/petrology/1.1.1. |