Цитирование: | 1. Anonymous (2020). Co3O4 Crystal Structure-SpringerMaterials. Available at: https://materials.springer.com/isp/crystallographic/docs/sd_0311005 (accessed 11.12.20).
2. Bard, A. J., Faulkner, L. R. (2002). Allen J. Bard and Larry R. Faulkner. Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed. Russ. J. Electrochem., 38, 1364-1365.
3. Bothra, P., Pati, S. K. (2016). Activity of water oxidation on pure and (Fe, Ni, and Cu)-substituted Co3O4. ACS Energy Lett., 1, 858-862.
4. Brillouin, L. (1930). Les électrons libres dans les métaux et le role des réflexions de Bragg. J. Phys. Radium, 1, 377-400.
5. Chen, J., Selloni, A. (2012). Water adsorption and oxidation at the Co3O4(110) surface. J. Phys. Chem. Lett., 3, 2808-2814.
6. Cook, T. R., Dogutan, D. K., Reece, S. Y., Surendranath, Y., Teets, T. S., Nocera, D. G. (2010). Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev., 110, 6474-6502.
7. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., Sutton, A. P. (1998). Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B, 57, 1505-1509.
8. Garciá-Mota, M., Bajdich, M., Viswanathan, V., Vojvodic, A., Bell, A. T., Nørskov, J. K. (2012). Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J. Phys. Chem. C, 116, 21077-21082.
9. Garciá-Mota, M., Vojvodic, A., Metiu, H., Man, I. C., Su, H. Y., Rossmeisl, J., Nørskov, J. K. (2011). Tailoring the activity for oxygen evolution electrocatalysis on rutile TiO2(110) by transition-metal substitution. Chem. Cat. Chem., 3, 1607-1611.
10. Henkelman, G., Arnaldsson, A., Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Comput. Materi. Sci., 36, 354-360.
11. Hu, C., Zhang, L., Gong, J. (2019). Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci., 12, 2620-2645.
12. Kaptagay, G. A., Inerbaev, T. M., Akilbekov, A. T., Koilyk, N. O., Abuova, A. U., Sandibaeva, N. A. (2020). First principles modelling of the N-doped Co0.5-terminated (0 0 1) Co3O4surface. Nucl. Instrum. Meth. Phys. Res. Section B, 465, 11-14.
13. Kaptagay, G. A. A., Inerbaev, T. M. M., Mastrikov, Yu. A., Kotomin, E. A. A., Akilbekov, A. T. T. (2015). Water interaction with perfect and fluorine-doped Co3O4(100) surface. Solid State Ionics, 277, 77-82.
14. Kaptagay, G. A. A., Mastrikov, Y. A. A., Kotomin, E. A. A. (2018). First-principles modelling of N-doped Co3O4. Latv. J. Phys. Techn. Sci., 55, 36-42.
15. Kohn, W., Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133-A1138.
16. Kresse, G., Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15-50.
17. Kresse, G., Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758-1775.
18. Liao, P., Keith, J. A., Carter, E. A. (2012). Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dop-ants for electrocatalysis. J. Amer. Chem. Soc., 134, 13296-13309.
19. Liu, L., Jiang, Z., Fang, L., Xu, H., Zhang, H., Gu, X., Wang, Y. (2017). Probing the crystal plane effect of Co3O4for enhanced electrocatalytic performance toward efficient overall water splitting. ACS Appl. Mater. Interfaces, 9, 27736-27744.
20. Man, I. C., Su, H. Y., Calle-Vallejo, F., Hansen, H. A., Martínez, J. I., Inoglu, N. G., Kitchin, J., Jaramillo, T. F., Ņrskov, J. K., Rossmeisl, J. (2011). Universality in oxygen evolution electrocatalysis on oxide surfaces. Chem. Cat. Chem., 3, 1159-1165.
21. Monkhorst, H. J., Pack, J. D. (1976). Special points for Brillouin-zone integrations. Phys. Rev. B., 13, 5188-5192.
22. Ohnishi, C., Asano, K., Iwamoto, S., Chikama, K., Inoue, M. (2007). Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen. Catalysis Today, 120, 145-150.
23. Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868.
24. Reier, T., Oezaslan, M., Strasser, P. (2012). Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catalysism, 2, 1765-1772.
25. Valdés, Á., Qu, Z. W., Kroes, G. J., Rossmeisl, J., Nørskov, J. K. (2008). Oxidation and photo-oxidation of water on TiO2surface. J. Phys. Chem. C, 112, 9872-9879.
26. Wang, Z., Liu, H., Ge, R., Ren, X., Ren, J., Yang, D., Zhang, L., Sun, X. (2018). Phosphorus-doped Co3O4nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catalysis, 8, 2236-2241.
27. Wang, Z., Xu, W., Chen, X., Peng, Y., Song, Y., Lv, C., Liu, H., Sun, J., Yuan, D., Li, X., Guo, X., Yang, D., Zhang, L. (2019). Defect-rich nitrogen doped Co3O4/C porous nanocubes Enable high-efficiency bifunctional oxygen electrocatalysis. Adv. Funct. Mater., 29, 1902875.
28. Xu, L., Wang, Z., Wang, J., Xiao, Z., Huang, X., Liu, Z., Wang, S. (2017). N-doped nanoporous Co3O4nanosheets with oxygen vacancies as oxygen evolving electrocatalysts. Nanotechnology, 28, 165402.
29. Xu, Y., Zhang, F., Sheng, T., Ye, T., Yi, D., Yang, Y., Liu, S., Wang, X., Yao, J. (2019). Clarifying the controversial catalytic active sites of Co3O4for the oxygen evolution reaction. J. Mater. Chem. A, 7, 23191-23198.
30. Yu, M., Trinkle, D. R. (2011). Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys., 134, 064111.
31. Zasada, F., Piskorz, W., Cristol, S., Paul, J.-F., Kotarba, A., Sojka, Z. (2010). Periodic density functional theory and atomistic thermodynamic studies of cobalt spinel nanocrystals in wet environment: Molecular interpretation of water adsorption equilibria. J. Phys. Chem. C, 114, 22245-22253.
|