Инд. авторы: Sagatova D.N, Shatskiy A.F., Gavryushkin P.N., Sagatov N.E., Litasov K.D.
Заглавие: Stability of ca2co4- pnma against the main mantle minerals from ab initio computations
Библ. ссылка: Sagatova D.N, Shatskiy A.F., Gavryushkin P.N., Sagatov N.E., Litasov K.D. Stability of ca2co4- pnma against the main mantle minerals from ab initio computations // ACS Earth and Space Chemistry. - 2021. - Vol.5. - Iss. 7. - P.1709-1715. - ISSN 2472-3452.
Внешние системы: DOI: 10.1021/acsearthspacechem.1c00065; РИНЦ: 46910610;
Реферат: eng: Recently, calcium orthocarbonate (Ca2CO4-Pnma) has been predicted to be stable under P-T conditions of the Earth's transition zone and the lower mantle. Here, we investigate its stability against the main mantle minerals in the pressure range of 20-100 GPa and temperatures of 1000-2000 K, based on the density functional theory within quasi-harmonic approximation. We found that Ca2CO4 appears in equilibrium with MgO (periclase) in the whole studied P-T range, while its coexistence with MgSiO3 (bridgmanite) is prohibited owing to the following reactions: Ca2CO4 + 2MgSiO3 → 2CaSiO3 + MgCO3 + MgO and Ca2CO4 + MgSiO3 + SiO2 → 2CaSiO3 + MgCO3. Our results revealed that Ca2CO4 can coexist with SiO2 up to 70-90 GPa at 500-2000 K where it reacts to produce carbon dioxide and Ca-perovskite, Ca2CO4 + 2SiO2 → 2CaSiO3 + CO2, typically observed as inclusions in ultradeep diamonds.
Ключевые слова: Quasi-harmonic approximation; lower mantle; calcium orthocarbonate; density functional theory; deep carbon cycle;
Издано: 2021
Физ. характеристика: с.1709-1715
Цитирование: 1. Kerrick, D. M.; Connolly, J. A. D. Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth Planet. Sci. Lett. 2001, 189, 19-29, 10.1016/s0012-821x(01)00347-8 2. Liu, Y.; He, D.; Gao, C.; Foley, S.; Gao, S.; Hu, Z.; Zong, K.; Chen, H. First direct evidence of sedimentary carbonate recycling in subduction-related xenoliths. Sci. Rep. 2015, 5, 11547, 10.1038/srep11547 3. Scambelluri, M.; Bebout, G. E.; Belmonte, D.; Gilio, M.; Campomenosi, N.; Collins, N.; Crispini, L. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling. Earth Planet. Sci. Lett. 2016, 441, 155-166, 10.1016/j.epsl.2016.02.034 4. Litasov, K. D. Physicochemical conditions for melting in the Earth's mantle containing a C-O-H fluid (from experimental data). Russ. Geol. Geophys. 2011, 52, 475-492, 10.1016/j.rgg.2011.04.001 5. Brenker, F. E.; Vollmer, C.; Vincze, L.; Vekemans, B.; Szymanski, A.; Janssens, K.; Szaloki, I.; Nasdala, L.; Joswig, W.; Kaminsky, F. Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet. Sci. Lett. 2007, 260, 1-9, 10.1016/j.epsl.2007.02.038 6. Zedgenizov, D. A.; Shatskiy, A.; Ragozin, A. L.; Kagi, H.; Shatsky, V. S. Merwinite in diamond from São Luiz, Brazil: A new mineral of the Ca-rich mantle environment. Am. Mineral. 2014, 99, 547-550, 10.2138/am.2014.4767 7. Yao, X.; Xie, C.; Dong, X.; Oganov, A. R.; Zeng, Q. Novel high-pressure calcium carbonates. Phys. Rev. B 2018, 98, 014108, 10.1103/physrevb.98.014108 8. Sagatova, D.; Shatskiy, A.; Sagatov, N.; Gavryushkin, P. N.; Litasov, K. D. Calcium orthocarbonate, Ca2CO4-Pnma: A potential host for subducting carbon in the transition zone and lower mantle. Lithos 2020, 370-371, 105637, 10.1016/j.lithos.2020.105637 9. Laniel, D. CCDC 2026976: Experimental Crystal Structure Determination, 2020. 10. Laniel, D.; Binck, J.; Winkler, B.; Vogel, S.; Fedotenko, T.; Chariton, S.; Prakapenka, V.; Milman, V.; Schnick, W.; Dubrovinsky, L. Synthesis, crystal structure and structure-property relations of strontium orthocarbonate, Sr2CO4. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2021, 77, 131-137, 10.1107/S2052520620016650 11. Binck, J.; Laniel, D.; Bayarjargal, L.; Khandarkhaeva, S.; Fedotenko, T.; Aslandukov, A.; Glazyrin, K.; Milman, V.; Chariton, S.; Prakapenka, V. B.; Dubrovinskaia, N.; Dubrovinsky, L.; Winkler, B. Synthesis of calcium orthocarbonate, Ca2CO4-Pnma at p,T-conditions of Earth's transition zone and lower mantle. Am. Mineral. 2021, 10.2138/am-2021-7872 12. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169-11186, 10.1103/physrevb.54.11169 13. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758-1775, 10.1103/physrevb.59.1758 14. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953-17979, 10.1103/physrevb.50.17953 15. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868, 10.1103/physrevlett.77.3865 16. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B: Solid State 1976, 13, 5188-5192, 10.1103/physrevb.13.5188 17. Hazen, R. M. Effects of temperature and pressure on the cell dimension and X-ray temperature factors of periclase. Am. Mineral. 1976, 61, 266-271, 10.1130/micro4-p263 18. Fiquet, G.; Richet, P.; Montagnac, G. High-temperature thermal expansion of lime, periclase, corundum and spinel. Phys. Chem. Miner. 1999, 27, 103-111, 10.1007/s002690050246 19. Merkys, A.; Vaitkus, A.; Butkus, J.; Okulič-Kazarinas, M.; Kairys, V.; Gražulis, S. COD:: CIF:: Parser: an error-correcting CIF parser for the Perl language. J. Appl. Crystallogr. 2016, 49, 292-301, 10.1107/s1600576715022396 20. Quirós, M.; Gražulis, S.; Girdzijauskaitė, S.; Merkys, A.; Vaitkus, A. Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database. J. Cheminf. 2018, 10, 23, 10.1186/s13321-018-0279-6 21. Graf, D. L. Crystallographic tables for the rhombohedral carbonates. Am. Mineral. 1961, 46, 1283-1316 22. Pickard, C. J.; Needs, R. J. Structures and stability of calcium and magnesium carbonates at mantle pressures. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 104101, 10.1103/physrevb.91.104101 23. Oganov, A. R.; Ono, S.; Ma, Y.; Glass, C. W.; Garcia, A. Novel high-pressure structures of MgCO3, CaCO3and CO2and their role in Earth's lower mantle. Earth Planet. Sci. Lett. 2008, 273, 38-47, 10.1016/j.epsl.2008.06.005 24. Fiquet, G.; Dewaele, A.; Andrault, D.; Kunz, M.; Le Bihan, T. Thermoelastic properties and crystal structure of MgSiO3perovskite at lower mantle pressure and temperature conditions. Geophys. Res. Lett. 2000, 27, 21-24, 10.1029/1999gl008397 25. Oganov, A. R.; Ono, S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3in Earth's D″ layer. Nature 2004, 430, 445-448, 10.1038/nature02701 26. Kanzaki, M.; Stebbins, J. F.; Xue, X. Characterization of quenched high pressure phases in CaSiO3system by XRD and 29Si NMR. Geophys. Res. Lett. 1991, 18, 463-466, 10.1029/91gl00463 27. Stixrude, L.; Cohen, R. E.; Yu, R.; Krakauer, H. Prediction of phase transition in CaSiO3perovskite and implications for lower mantle structure. Am. Mineral. 1996, 81, 1293, 10.2138/am-1996-9-1030 28. Ross, N.; Shu, J.; Hazen, R. M. High-pressure crystal chemistry of stishovite. Am. Mineral. 1990, 75, 739-747 29. Dubrovinsky, L. S.; Saxena, S. K.; Lazor, P.; Ahuja, R.; Eriksson, O.; Wills, J. M.; Johansson, B. Experimental and theoretical identification of a new high-pressure phase of silica. Nature 1997, 388, 362-365, 10.1038/41066 30. Datchi, F.; Mallick, B.; Salamat, A.; Ninet, S. Structure of polymeric carbon dioxide CO2-V. Phys. Rev. Lett. 2012, 108, 125701, 10.1103/physrevlett.108.125701 31. Datchi, F.; Weck, G. X-ray crystallography of simple molecular solids up to megabar pressures: application to solid oxygen and carbon dioxide. Z. Kristallogr.-Cryst. Mater. 2014, 229, 135-157, 10.1515/zkri-2013-1669 32. Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C. M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; Kirtman, B. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1360 10.1002/wcms.1360 33. Gillan, M. J.; Alfè, D.; Brodholt, J.; Vočadlo, L.; Price, G. D. First-principles modelling of Earth and planetary materials at high pressures and temperatures. Rep. Prog. Phys. 2006, 69, 2365-2441, 10.1088/0034-4885/69/8/r03 34. Karki, B. B.; Wentzcovitch, R. M.; de Gironcoli, S.; Baroni, S. First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions. Science 1999, 286, 1705, 10.1126/science.286.5445.1705 35. Liu, Z. J.; Sun, X. W.; Chen, Q. F.; Cai, L. C.; Wu, H. Y.; Ge, S. H. First-principles study of the elastic and thermodynamic properties of CaSiO3perovskite. J. Phys.: Condens. Matter 2007, 19, 246103, 10.1088/0953-8984/19/24/246103 36. Oganov, A. R.; Brodholt, J. P.; Price, G. D. Ab initio theory of phase transitions and thermoelasticity of minerals. EMU Notes in Mineralogy 2002, 4, 83-170, 10.1180/EMU-notes.4 37. Wentzcovitch, R. M.; Yu, Y. G.; Wu, Z. Thermodynamic properties and phase relations in mantle minerals investigated by first principles quasiharmonic theory. Rev. Mineral. Geochem. 2010, 71, 59-98, 10.2138/rmg.2010.71.4 38. Gavryushkin, P. N.; Sagatov, N.; Belonoshko, A. B.; Banaev, M. V.; Litasov, K. D. Disordered Aragonite: The New High-Pressure, High-Temperature Phase of CaCO3. J. Phys. Chem. C 2020, 124, 26467-26473, 10.1021/acs.jpcc.0c08309 39. Sagatova, D. N.; Shatskiy, A. F.; Sagatov, N. E.; Litasov, K. D. Phase relations in CaSiO3system up to 100 GPa and 2500 K. Geochem. Int. 2021, 59, 791-800 40. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1-5, 10.1016/j.scriptamat.2015.07.021 41. Tadano, T.; Gohda, Y.; Tsuneyuki, S. Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations. J. Phys.: Condens. Matter 2014, 26, 225402, 10.1088/0953-8984/26/22/225402 42. Tadano, T.; Tsuneyuki, S. Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3with first-principles anharmonic force constants. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 92, 054301, 10.1103/physrevb.92.054301 43. Sun, T.; Zhang, D.-B.; Wentzcovitch, R. M. Dynamic stabilization of cubic CaSiO3perovskite at high temperatures and pressures from ab initio molecular dynamics. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 094109, 10.1103/physrevb.89.094109 44. Duffy, T. S.; Hemley, R. J.; Mao, H.-k. Equation of state and shear strength at multimegabar pressures: Magnesium oxide to 227 GPa. Phys. Rev. Lett. 1995, 74, 1371-1374, 10.1103/physrevlett.74.1371 45. Drewitt, J. W. E.; Walter, M. J.; Zhang, H.; McMahon, S. C.; Edwards, D.; Heinen, B. J.; Lord, O. T.; Anzellini, S.; Kleppe, A. K. The fate of carbonate in oceanic crust subducted into earth's lower mantle. Earth Planet. Sci. Lett. 2019, 511, 213-222, 10.1016/j.epsl.2019.01.041 46. Litasov, K. D.; Goncharov, A. F.; Hemley, R. J. Crossover from melting to dissociation of CO2under pressure: Implications for the lower mantle. Earth Planet. Sci. Lett. 2011, 309, 318-323, 10.1016/j.epsl.2011.07.006 47. Seto, Y.; Hamane, D.; Nagai, T.; Fujino, K. Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation. Phys. Chem. Miner. 2008, 35, 223-229, 10.1007/s00269-008-0215-9 48. Tschauner, O.; Mao, H. K.; Hemley, R. J. New Transformations of CO2at High Pressures and Temperatures. Phys. Rev. Lett. 2001, 87, 075701, 10.1103/PhysRevLett.87.075701 49. Dziubek, K. F.; Ende, M.; Scelta, D.; Bini, R.; Mezouar, M.; Garbarino, G.; Miletich, R. Crystalline polymeric carbon dioxide stable at megabar pressures. Nat. Commun. 2018, 9, 3148, 10.1038/s41467-018-05593-8 50. Teweldeberhan, A. M.; Boates, B.; Bonev, S. A. CO2in the mantle: Melting and solid-solid phase boundaries. Earth Planet. Sci. Lett. 2013, 373, 228-232, 10.1016/j.epsl.2013.05.008 51. Scelta, D.; Dziubek, K. F.; Ende, M.; Miletich, R.; Mezouar, M.; Garbarino, G.; Bini, R. Extending the stability field of polymeric carbon dioxide phase V beyond the Earth's geotherm. Phys. Rev. Lett. 2021, 126, 065701, 10.1103/PhysRevLett.126.065701 52. Jeanloz, R.; Ahrens, T. J.; Mao, H. K.; Bell, P. M. B1-B2 Transition in calcium oxide from shock-wave and diamond-cell experiments. Science 1979, 206, 829, 10.1126/science.206.4420.829 53. Yamanaka, T.; Kittaka, K.; Nagai, T. B1-B2 transition in CaO and possibility of CaSiO3-perovskite decomposition under high pressure. J. Mineral. Petrol. Sci. 2002, 97, 144-152, 10.2465/jmps.97.144 54. Karki, B. B.; Wentzcovitch, R. M. Vibrational and quasiharmonic thermal properties of CaO under pressure. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 68, 224304, 10.1103/physrevb.68.224304 55. Oganov, A. R.; Gillan, M. J.; Price, G. D. Structural stability of silica at high pressures and temperatures. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 064104, 10.1103/physrevb.71.064104 56. Sokolova, T. S.; Dorogokupets, P. I.; Litasov, K. D.; Danilov, B. S.; Dymshits, A. M. Spreadsheets to calculate P-V-T relations, thermodynamic and thermoelastic properties of silicates in the MgSiO3-MgO system. High Pressure Res. 2018, 38, 193-211, 10.1080/08957959.2018.1465056 57. Komabayashi, T.; Hirose, K.; Sata, N.; Ohishi, Y.; Dubrovinsky, L. S. Phase transition in CaSiO3perovskite. Earth Planet. Sci. Lett. 2007, 260, 564-569, 10.1016/j.epsl.2007.06.015 58. Ono, S.; Ohishi, Y.; Mibe, K. Phase transition of Ca-perovskite and stability of Al-bearing Mg-perovskite in the lower mantle. Am. Mineral. 2004, 89, 1480-1485, 10.2138/am-2004-1016 59. Kurashina, T.; Hirose, K.; Ono, S.; Sata, N.; Ohishi, Y. Phase transition in Al-bearing CaSiO3perovskite: implications for seismic discontinuities in the lower mantle. Phys. Earth Planet. Inter. 2004, 145, 67-74, 10.1016/j.pepi.2004.02.005 60. Sun, N.; Mao, Z.; Yan, S.; Wu, X.; Prakapenka, V. B.; Lin, J. F. Confirming a pyrolitic lower mantle using self-consistent pressure scales and new constraints on CaSiO3perovskite. J. Geophys. Res.: Solid Earth 2016, 121, 4876-4894, 10.1002/2016jb013062 61. Stixrude, L.; Lithgow-Bertelloni, C.; Kiefer, B.; Fumagalli, P. Phase stability and shear softening in CaSiO3perovskite at high pressure. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 75, 024108, 10.1103/physrevb.75.024108 62. Binck, J.; Bayarjargal, L.; Lobanov, S. S.; Morgenroth, W.; Luchitskaia, R.; Pickard, C. J.; Milman, V.; Refson, K.; Jochym, D. B.; Byrne, P.; Winkler, B. Phase stabilities of MgCO3and MgCO3-II studied by Raman spectroscopy, x-ray diffraction, and density functional theory calculations. Phys. Rev. Mater. 2020, 4, 055001, 10.1103/physrevmaterials.4.055001 63. Zhang, Z.; Mao, Z.; Liu, X.; Zhang, Y.; Brodholt, J. Stability and reactions of CaCO3polymorphs in the Earth's deep mantle. J. Geophys. Res.: Solid Earth 2018, 123, 6491-6500, 10.1029/2018JB015654 64. Santamaria-Perez, D.; Ruiz-Fuertes, J.; Marqueño, T.; Pellicer-Porres, J.; Chulia-Jordan, R.; MacLeod, S.; Popescu, C. Structural behavior of natural silicate-carbonate spurrite mineral, Ca5(SiO4)2(CO3), under high-pressure, high-temperature conditions. Inorg. Chem. 2018, 57, 98-105, 10.1021/acs.inorgchem.7b02101 65. Santamaria-Perez, D.; Ruiz-Fuertes, J.; Peña-Alvarez, M.; Chulia-Jordan, R.; Marqueño, T.; Zimmer, D.; Gutiérrez-Cano, V.; MacLeod, S.; Gregoryanz, E.; Popescu, C.; Rodríguez-Hernández, P.; Muñoz, A. Post-tilleyite, a dense calcium silicate-carbonate phase. Sci. Rep. 2019, 9, 7898, 10.1038/s41598-019-44326-9 66. Santos, S. S. M.; Marcondes, M. L.; Justo, J. F.; Assali, L. V. C. Stability of calcium and magnesium carbonates at Earth's lower mantle thermodynamic conditions. Earth Planet. Sci. Lett. 2019, 506, 1-7, 10.1016/j.epsl.2018.10.030 67. Litasov, K. D.; Shatskiy, A. Carbon-bearing magmas in the Earth's deep interior. In Magmas under pressure: Advances in High-Pressure Experiments on Structure and Properties of Melts; Kono, Y., Sanloup, C., Eds.; Elsevier, 2018; pp 43-82. 68. Litasov, K.; Ohtani, E. The solidus of carbonated eclogite in the system CaO-Al2O3-MgO-SiO2-Na2O-CO2to 32GPa and carbonatite liquid in the deep mantle. Earth Planet. Sci. Lett. 2010, 295, 115-126, 10.1016/j.epsl.2010.03.030 69. Litasov, K. D.; Ohtani, E. Solidus and phase relations of carbonated peridotite in the system CaO-Al2O3-MgO-SiO2-Na2O-CO2to the lower mantle depths. Phys. Earth Planet. Inter. 2009, 177, 46-58, 10.1016/j.pepi.2009.07.008 70. Rohrbach, A.; Schmidt, M. W. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Nature 2011, 472, 209-212, 10.1038/nature09899 71. Murakami, M.; Hirose, K.; Ono, S.; Ohishi, Y. Stability of CaCl2-type and α-PbO2-type SiO2at high pressure and temperature determined by in-situ X-ray measurements. Geophys. Res. Lett. 2003, 30, 1207, 10.1029/2002gl016722