Инд. авторы: Zhao J., Chu G., Wang S., Sun Q., Dong H., Darin A.V.
Заглавие: N-alkane distribution and their paleoenvironmental implications during holocene in lacustrine sediments in lake shuang, xinjiang
Библ. ссылка: Zhao J., Chu G., Wang S., Sun Q., Dong H., Darin A.V. N-alkane distribution and their paleoenvironmental implications during holocene in lacustrine sediments in lake shuang, xinjiang // Quaternary Science. - 2021. - Т.41. - № 4. - С.965-975. - ISSN 1001-7410.
Внешние системы: DOI: 10.11928/j.issn.1001.7410.2021.04.07; РИНЦ: 47004927;
Реферат: eng: The Altai Mountains are located at the junction of Asia and Europe. It is far away from oceans, and typical temperate continental climate. Moisture sources are mainly from the Atlantic and Arctic Oceans, as well as from recycled moisture from the Mediterranean Sea, the Caspian Sea and the Black Sea in the middle latitude. It is one of the key regions to study paleoclimate change. Here, we present a paleoclimatic and paleoenvironmental record from the sediments of Lake Shuang. Lake Shuang(48°52'N, 87° 02'E) is located in the middle of the Altai Mountains and was formed by the landslide damming of a valley. The lake is about 1200m in length, 300m in width, and a maximum depth of 9m. Sediment cores were collected by using a gravity corer and obtained a 172cm sediment profile without disturbance. The chronology of sediment cores during the past 9.1cal.kaB.P. is based on radiometric dating data such as137Cs,210Pb and AMS14C. The n-alkane proxies such as average chain length(ACL23~33), grass/tree ratio(nC27/nC31) and Paq ratio(Aquatic Plant n-alkane Proxy) were used to reconstruct vegetation and climate changes over the past 9.1cal.kaB.P. The result indicates that the sediments are dominated by middle-and long-chain n-alkanes in the range of nC23~nC33 with a strong odd over even carbon number predominance. There is a strong correlation among ACL23~33, nC27/nC31 and Paq, which may suggest that these proxies may be affected by the similar climate driving factors and reflect the succession history of vegetation. The n-alkane proxies suggests less input of aquatic vegetation in the sediment in the interval of 9.1~8.8cal.kaB.P., followed by an increase of herbaceous and aquatic plants between 8.8cal.kaB.P. and 3.3cal.kaB.P., while a decrease of woody plants and increase of herbaceous plants after ca. 3.3cal.kaB.P. The ACL23~33 values show an increasing trend over the past 9.1cal.kaB.P. that suggest a warming trend since the Early Holocene. Although it is similar with previous br-GDGT-based temperature reconstruction from our study region, it is not well correlated at centennial-millennial time scale probably due to uncertainties in proxy sensitivity and chronology.
Ключевые слова: holocene; Altai mountains; distribution; n-Alkane; Lake Shuang;
Издано: 2021
Физ. характеристика: с.965-975
Цитирование: 1. Chen F, Yu Z, Yang M, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3-4):351-364. 2. Chen F, Jia J, Chen J, et al. A persistent Holocene wetting trend in arid Central Asia, with wettest conditions in the Late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016, 146:134-146. doi:10.1016/j.quascirev.2016.06.002. 3. Long H, Shen J, Chen J, et al. Holocene moisture variations over the arid Central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China[J]. Quaternary Science Reviews, 2017, 174(15):13-32. 4. Ran M, Feng Z. Holocene moisture variations across China and driving mechanisms:A synthesis of climatic records[J]. Quaternary International, 2013, 313-314:179-193. doi:10.1016/j.quaint.2013.09.034. 5. Wang W, Feng Z. Holocene moisture evolution across the Mongolian Plateau and its surrounding areas:A synthesis of climatic records[J]. Earth-Science Reviews, 2013, 122:38-57. doi:10.1016/j.earscirev.2013.03.005. 6. 陈隆勋, 朱乾根, 罗会邦, 等. 东亚季风[M]. 北京:气象出版社, 1991:306-307. Chen Longxun, Zhu Qiangen, Luo Huibang, et al. East Asian Monsoon[M]. Beijing:China Meteorological Press, 1991:306-307. 7. Prokopenko A, Khursevich G, Bezrukova E, et al. Paleoenvironmental proxy records from Lake Hovsgol, Mongolia, and a synthesis of Holocene climate change in the Lake Baikal watershed[J]. Quaternary Research, 2007, 68(1):2-17. 8. Zhang H, Zhang Y, Kong Z, et al. Late Holocene climate change and anthropogenic activities in north Xinjiang:Evidence from a peatland archive, the Caotanhu wetland[J]. The Holocene, 2015, 25(2):323-332. 9. Feng Z, Wu H, Zhang C, et al. Bioclimatic change of the past 2500 years within the Balkhash Basin, Eastern Kazakhstan, Central Asia[J]. Quaternary International, 2013, 311:63-70. doi:10.1016/j.quaint.2013.06.032. 10. Huang X, Wei P, Natalia R, et al. Holocene vegetation and climate dynamics in the Altai Mountains and surrounding areas[J]. Geophysical Research Letters, 2018, 45(13):6628-6636. 11. 饶志国, 郭海春. 北疆阿尔泰哈拉沙子高山泥炭岩芯孢粉记录是否指示全新世温度变化历史?[J]. 第四纪研究, 2021, 41(2):612-620. Rao Zhiguo, Guo Haichun. Is the pollen-based taiga biome score record from alpine Sahara sand peatland in the southern Altai Mountains of northern Xinjiang an indicator of Holocene temperature history?[J]. Quaternary Sciences, 2021, 41(2):612-620. 12. Rudaya N, Tarasov P, Dorofeyuk N, et al. Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records:A step towards better understanding climate dynamics in Central Asia[J]. Quaternary Science Reviews, 2009, 28(5-6):540-554. 13. Zhang D, Feng Z. Holocene climate variations in the Altai Mountains and the surrounding areas:A synthesis of pollen records[J]. Earth-Science Reviews, 2018, 185:847-869. doi:10.1016/j.earscirev.2018.08.007. 14. 张彦, 马学彗, 刘兴土, 等. 新疆阿尔泰山区全新世泥炭丘形态、发育过程与泥炭堆积速率初探[J]. 第四纪研究, 2018, 38(5):1221-1232. Zhang Yan, Ma Xuehui, Liu Xingtu, et al. Preliminary study on morpholopy, development process and peat accumulation rate of palsas during the Holocence in the Altai Mountains, northern Xinjiang Autonomous Region, Northwest China[J]. Quaternary Sciences, 2018, 38(5):1221-1232. 15. Rao Z, Shi F, Li Y, et al. Long-term winter/summer warming trends during the Holocene revealed by α-cellulose δ18O/δ13C records from an alpine peat core from Central Asia[J]. Quaternary Science Reviews, 2020, 232(15):106217. doi:10.1016/j. quascirev.2020.106217. 16. Agatova A, Nazarov A, Nepop R, et al. Holocene glacier fluctuations and climate changes in the southeastern part of the Russian Altai (South Siberia) based on a radiocarbon chronology[J]. Quaternary Science Reviews, 2012, 43:74-93. doi:10.1016/j.quascirev.2012.04.012. 17. Agatova A. Geomorphologic mapping of the Chagan-Uzun River basin:A key for reconstructing history of Pleistocene glaciations in the southern Altai[J]. Stratigraphy and Geological Correlation, 2005, 13(6):656-666. 18. Zhang D, Feng Z, Yang Y, et al. Peat δ13C celluose-recorded wetting trend during the past 8000 years in the southern Altai Mountains, northern Xinjiang, NW China[J]. Journal of Asian Earth Sciences, 2018, 156:174-179. doi:10.1016/j. jseaes. 2018.01.029. 19. 郑邦, 周斌, 王可, 等. 晚全新世东海泥质区物源输入、源区植被变化及其影响因素:来自MD06-3039A孔的正构烷烃记录[J]. 第四纪研究, 2018, 38(5):1293-1303. Zheng Bang, Zhou Bin, Wang Ke, et al. Changes of provenance input and source vegetation changes and their impact factors since Late Holocene based on n-alkanes records from core MD06-3039A in the muddy area of the East China Sea[J]. Quaternary Sciences, 2018, 38(5):1293-1303. 20. Chu G, Sun Q, Xie M, et al. Holocene cyclic climatic variations and the role of the Pacific Ocean as recorded in varved sediments from Northeastern China[J]. Quaternary Science Reviews, 2014, 102:85-95. doi:10.1016/j.quascirev.2014.08.008. 21. Wang G, Feng X, Han J, et al. Paleovegetation reconstruction using δ13C of soil organic matter[J]. Biogeosciences Discussions, 2008, 5(2):1795-1823. 22. 马雪云, 魏志福, 王永莉, 等. 末次冰盛期以来东北地区霍拉盆地湖泊沉积物记录的C3/C4植被演化[J]. 第四纪研究, 2018, 38(5):1193-1202. Ma Xueyun, Wei Zhifu, Wang Yongli, et al. C3/C4 vegetation evolution recorded by lake sediments in the Huola basin, Northeast China since the Last Glacial Maximum[J]. Quaternary Sciences, 2018, 38(5):1193-1202. 23. Xie M, Sun Q, Dong H, et al. n-Alkanes and compound carbon isotope records from Lake Yiheshariwusu in the Hulun Buir sandy land, Northeastern China[J]. The Holocene, 2020, 30(10):1451-1461. 24. 何薇, 汪亘, 王永莉, 等. 四川邛海湖泊沉积物记录的过去30 cal. ka B. P. 以来的古气候环境特征[J]. 第四纪研究, 2018, 38(5):1179-1192. He Wei, Wang Gen, Wang Yongli, et al. Characteristics of climate and environment over the past 30 cal. ka B. P. recorded in lacustrine deposits of Qionghai Lake, Sichuan Province[J]. Quaternary Sciences, 2018, 38(5):1179-1192. 25. Wang J, Xu Y, Zhou L, et al. Disentangling temperature effects on leaf wax n-alkane traits and carbon isotopic composition from phylogeny and precipitation[J]. Organic Geochemistry, 2018, 126:13-22, doi:10.1016/j.orggeochem.2018.10.008. 26. Howard S, McInerney F, Caddy-Retalic S, et al. Modelling leaf wax n-alkane inputs to soils along a latitudinal transect across Australia[J]. Organic Geochemistry, 2018, 121:126-137. doi:10.1016/j.orggeochem.2018.03.013. 27. Rommerskirchen F, Eglinton G, Dupont L, et al. A north to south transect of Holocene southeast Atlantic continental margin sediments:Relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records[J]. Geochemistry, Geophysics, Geosystems, 2013, 4(12):1101. 28. Ficken K, Li B, Swain D, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7-8):745-749. 29. 王玉慧, 黄小忠, 彭卫, 等. 喀纳斯湖植物残体碳同位素记录的温度波动[J]. 科学通报, 2017, 62(24):2829-2839. Wang Yuhui, Huang Xiaozhong, Peng Wei, et al. Temperature variations over the past 600 years documented by a δ13C record from terrestrial plant remains from Kanas Lake, Altai Mountains, Northwestern China[J]. Chinese Science Bulletin, 2017, 62(24):2829-2839. 30. Stuiver M, Reimer P, Bard E, et al. INTCAL98 radio-carbon age calibration, 24, 000-0 cal BP[J]. Radiocarbon, 1998, 40(3):1041-1083. 31. Cranwell P, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments-Ⅱ[J]. Organic Geochemistry, 1987, 11(6):513-527. 32. Eglinton G, Hamilton R. Leaf epicuticular waxes[J]. Science, 1967, 156(3780):1322-1335. 33. Aichner B, Wilkes H, Herzschuh U, et al. Biomarker and compound-specific δ13C evidence for changing environmental conditions and carbon limitation at Lake Koucha, eastern Tibetan Plateau[J]. Journal of Paleolimnology, 2010, 43(4):873-899. 34. CastaEda I, Schouten S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, 2011, 30(21-22):2851-2891. 35. Cui J, Huang J, Xie S. Characterstics of seasonal variations of leaf n-alkanes and n-alkenes in modern higher plants in Qingjiang, Hubei Province, China[J]. Chinese Science Bulletin, 2008, 53(17):2659-2664. 36. Zhang Z, Zhao M, Eglinton G, et al. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr[J]. Quaternary Science Reviews, 2006, 25(5-6):575-594. 37. Sun Q, Xie M, Shi L, et al. Alkanes, compound-specific carbon isotope measures and climate variation during the last millennium from varved sediments of Lake Xiaolongwan, Northeast China[J]. Journal of Paleolimnology, 2013, 50(3):331-344. 38. Chu G, Sun Q, Xie M, et al. Holocene cyclic climatic variations and the role of the Pacific Ocean as recorded in varved sediments from Northeastern China[J]. Quaternary Science Reviews, 2014, 102:85-95. doi:10.1016/j.quascirev.2014.08.008. 39. Ling Y, Zheng M, Xie B, et al. The impact of climatic and environmental factors on n-alkanes indices in southwestern Tibetan Plateau[J]. Acta Geologica Sinica, 2019, 19:1755-6724. doi:10.1111/1755-6724.14376. 40. Bush R, McInerney F. Influence of temperature and C4 abundance on n-alkane chain length distributions across the Central USA[J]. Organic Geochemistry, 2015, 79:65-73. doi:10.1016/j. orggeochem.2014.12.003. 41. Diefendorf A, Freimuth E. Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record:A review[J]. Organic Geochemistry, 2016, 103:1-21. doi:10.1016/j.orggeochem.2016.10.016. 42. Diefendorf A, Leslie A Wing S. Leaf wax composition and carbon isotopes vary among major conifer groups[J]. Geochimica et Cosmochimica Acta, 2015, 170:145-156. doi:10.1016/j. gca. 2015.08.018. 43. Carr A, Boom A, Grimes H, et al. Leaf wax n-alkane distributions in arid zone South African flora:Environmental controls, chemotaxonomy and palaeoecological implications[J]. Organic Geochemistry, 2014, 67:72-84. doi:10.1016/j. orggeochem. 2013.12.004. 44. Cranwell P. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change[J]. Freshwater Biology, 2010, 3(3):259-265. 45. Zech M, Krause T, Meszner S, et al. Incorrect when uncorrected:Reconstructing vegetation history using n-alkane biomarkers in loess-paleosol sequences-A case study from the Saxonian loess region, Germany[J]. Quaternary International, 2013, 296:108-116. doi:10.1016/j.quaint.2012.01.023. 46. Zhang Z, Zhao M, Eglinton G, et al. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr[J]. Quaternary Science Reviews, 2006, 25(5-6):575-594. 47. 张彦. 新疆阿尔泰山区全新世泥炭发育特征及区域环境演变[D]. 北京:中国科学院大学博士学位论文, 2016:58-89. Zhang Yan. Peat Development Characteristics and Regional Environment Evolution during the Holocene in Altai Mountains, Xinjiang[D]. Beijing:The Doctoral Dissertation of University of Chinese Academy of Sciences, 2006:58-89. 48. 陶士臣, 安成邦, 陈发虎, 等. 孢粉记录的新疆巴里坤湖16.7 cal ka BP以来的植被与环境[J]. 科学通报, 2010, 11(55):1026-1035. Tao Shichen, An Chengbang, Chen Fahu, et al. Pollen-inferred vegetation and environmental changes since 16.7 cal ka BP at Balikun Lake, Xinjiang[J]. Chinese Science Bulletin, 2010, 11(55):1026-1035. 49. Blyakharchuk T, Wright H, Borodavko P, et al. Late Glacial and Holocene vegetational history of the Altai Mountains (Southwestern Tuva Republic, Siberia)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245(3-4):518-534. 50. 徐浩杰. 亚洲中部干旱区植被变化及其影响因素(2000-2012)[D]. 兰州:兰州大学硕士论文, 2014:23-70. Xu Haojie. Vegetation Change and Its Influencing Factors in the Arid Area of Central Asia (2000-2012)[D]. Lanzhou:The Master's Dissertation of Lanzhou University, 2014:23-70. 51. 祝稳. 西北干旱区植被覆盖动态及其对极端气温和降水过程的响应[D]. 兰州:西北师范大学硕士学位论文, 2015:30-70. Zhu Wen. Dynamics of Vegetation Coverage in Arid Areas of Northwest China and Its Response to Extreme Temperature and Precipitation Process[D]. Lanzhou:The Master's Dissertation of Northwest Normal University, 2015:30-70. 52. Huang X, Chen F, Fan Y, et al. Dry late-glacial and Early Holocene climate in arid Central Asia indicated by lithological and palynological evidence from Bosten Lake, China[J]. Quaternary International, 2007, 194(1):19-27. 53. Gasse K. Oxygen isotopes in lacustrine carbonates of West China revisited:Implications for post glacial changes in summer monsoon circulation[J]. Quaternary Science Reviews, 1999, 18:1315-1334. doi:10.1016/S0277-3791(98) 00115-2. 54. Rao Z, Guo H, Cao J, et al. Consistent long-term Holocene warming trend at different elevations in the Altai Mountains in arid Central Asia[J]. Journal of Quaternary Science, 2020, 35(8):1036-1045. 55. Marcott S, Shakun J, Clark P, et al. A reconstruction of regional and global temperature for the past 11, 300 years[J]. Science, 2013, 339(6124):1198-1201. doi:10.1126/science.1228026. 56. Liu Z, Zhu J, Rosenthal Y, et al. PNAS Plus:The Holocene temperature conundrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34):3501-3505. 57. 万凌峰, 刘健, 高超超, 等. 全新世火山喷发对温度变化趋势影响的模拟研究[J]. 第四纪研究, 2020, 40(6):1597-1610. Wan Lingfeng, Liu Jian, Gao Chaochao, et al. Study about influence of the Holocene volcanic eruptions on temperature variation trend by simulation[J]. Quaternary Sciences, 2020, 40(6):1597-1610.