Инд. авторы: Wang H., Liu W., Liu H., Cao Y., Hu J., Liu Z., He Y., Zhou A., Zhao H., Meng B., Jiang J., Kolpakova M.N, Krivonogov S.K.
Заглавие: Salinity-controlled isomerization of lacustrine brgdgts impacts the associated mbt5me' terrestrial temperature index
Библ. ссылка: Wang H., Liu W., Liu H., Cao Y., Hu J., Liu Z., He Y., Zhou A., Zhao H., Meng B., Jiang J., Kolpakova M.N, Krivonogov S.K. Salinity-controlled isomerization of lacustrine brgdgts impacts the associated mbt5me' terrestrial temperature index // Geochimica et Cosmochimica Acta. - 2021. - Vol.305. - P.33-48. - ISSN 0016-7037. - EISSN 1872-9533.
Внешние системы: DOI: 10.1016/j.gca.2021.05.004; РИНЦ: 46893704;
Реферат: eng: Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are microbial molecular fossils ubiquitous in natural environments. The correlation between the Methylation Index of brGDGTs (the MBT5ME' paleothermometer) and temperature offers an important tool for reconstructing past terrestrial temperatures. However, factors other than temperature could also affect the distribution of brGDGTs in lacustrine systems, hampering the quantitative application of this paleothermometer. Here we investigated brGDGT distributions in contemporary sediments collected from 52 lakes in mid-latitude Asia. Combined with published brGDGT data from other lakes across the globe, we have found a strong salinity control on the relative abundance of 5-methyl brGDGTs versus their late-eluting isomers (including 6-methyl, 7-methyl, and unknown isomers). This allows the development of novel indices based on the isomerization of brGDGTs for tracing past lake water salinity. We also demonstrate that salinity-controlled isomerization of pentamethylated and hexamethylated brGDGTs can significantly impact the MBT5ME' paleothermometer, potentially leading to an overestimation of past temperature, but the temperature signal can be extracted out of the MBT5ME' index after correcting the salinity effect. As demonstrated in application to a Lake Qinghai (China) sediment core spanning the last 18 kyr, our finding could facilitate the simultaneous retrieval of reliable temperature and salinity records using brGDGTs in lacustrine settings, in particular for lakes that have experienced large salinity changes during the geological past.
Ключевые слова: temperature; salinity; BrGDGTs; MBT5ME'; isomerization;
Издано: 2021
Физ. характеристика: с.33-48
Цитирование: 1. Becker, K.W., Lipp, J.S., Zhu, C., Liu, X.-L., Hinrichs, K.-U., An improved method for the analysis of archaeal and bacterial ether core lipids. Org. Geochem. 61 (2013), 34–44. 2. Castañeda, I.S., Schouten, S., A review of molecular organic proxies for examining modern and ancient lacustrine environments. Quat. Sci. Rev. 30 (2011), 2851–2891. 3. Cao, J., Rao, Z., Shi, F., Jia, G., Decoupling of water and air temperature in winter causes warm season bias of lacustrine brGDGTs temperature estimates. Biogeosciences 17 (2020), 2521–2536. 4. Chen, F., Wu, D., Chen, J., Zhou, A., Yu, J., Shen, J., Wang, S., Huang, X., Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies. Quat. Sci. Rev. 154 (2016), 111–129. 5. Dang, X., Ding, W., Yang, H., Pancost, R.D., Naafs, B.D.A., Xue, J., Lin, X., Lu, J., Xie, S., Different temperature dependence of the bacterial brGDGT isomers in 35 Chinese lake sediments compared to that in soils. Org. Geochem. 119 (2018), 72–79. 6. De Jonge, C., Hopmans, E.C., Zell, C.I., Kim, J.-H., Schouten, S., Sinninghe Damsté, J.S., Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: Implications for palaeoclimate reconstruction. Geochim. Cosmochim. Acta 141 (2014), 97–112. 7. De Jonge, C., Stadnitskaia, A., Fedotov, A., Sinninghe Damsté, J.S., Impact of riverine suspended particulate matter on the branched glycerol dialkyl glycerol tetraether composition of lakes: The outflow of the Selenga River in Lake Baikal (Russia). Org. Geochem. 83–84 (2015), 241–252. 8. Dearing Crampton-Flood, E., Tierney, J.E., Peterse, F., Kirkels, F.M.S.A., Sinninghe Damsté, J.S., BayMBT: A Bayesian calibration model for branched glycerol dialkyl glycerol tetraethers in soils and peats. Geochim. Cosmochim. Acta 268 (2020), 142–159. 9. Deng, L., Jia, G., Jin, C., Li, S., Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate. Org. Geochem. 96 (2016), 11–17. 10. Ding, S., Schwab, V.F., Ueberschaar, N., Roth, V.-N., Lange, M., Xu, Y., Gleixner, G., Pohnert, G., Identification of novel 7-methyl and cyclopentanyl branched glycerol dialkyl glycerol tetraethers in lake sediments. Org. Geochem. 102 (2016), 52–58. 11. Fick, S.E., Hijmans, R.J., WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37 (2017), 4302–4315. 12. Foster, L.C., Pearson, E.J., Juggins, S., Hodgson, D.A., Saunders, K.M., Verleyen, E., Roberts, S.J., Development of a regional glycerol dialkyl glycerol tetraether (GDGT)-temperature calibration for Antarctic and sub-Antarctic lakes. Earth Planet. Sci. Lett. 433 (2016), 370–379. 13. Günther, F., Thiele, A., Gleixner, G., Xu, B., Yao, T., Schouten, S., Distribution of bacterial and archaeal ether lipids in soils and surface sediments of Tibetan lakes: Implications for GDGT-based proxies in saline high mountain lakes. Org. Geochem. 67 (2014), 19–30. 14. He, Y., Wang, H., Meng, B., Liu, H., Zhou, A., Song, M., Kolpakova, M., Krivonogov, S., Liu, W., Liu, Z., Appraisal of alkenone- and archaeal ether-based salinity indicators in mid–latitude Asian lakes. Earth Planet. Sci. Lett., 538, 2020, 116236. 15. Hopmans, E.C., Schouten, S., Sinninghe Damsté, J.S., The effect of improved chromatography on GDGT-based palaeoproxies. Org. Geochem. 93 (2016), 1–6. 16. Hou, J., Huang, Y., Zhao, J., Liu, Z., Colman, S., An, Z., Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau. Geophys. Res. Lett. 43 (2016), 1323–1330. 17. Hren, M.T., Sheldon, N.D., Temporal variations in lake water temperature: Paleoenvironmental implications of lake carbonate δ18O and temperature records. Earth Planet. Sci. Lett. 337–338 (2012), 77–84. 18. Hu, J., Zhou, H., Peng, P., Spiro, B., Seasonal variability in concentrations and fluxes of glycerol dialkyl glycerol tetraethers in Huguangyan Maar Lake, SE China: Implications for the applicability of the MBT-CBT paleotemperature proxy in lacustrine settings. Chem. Geol. 420 (2016), 200–212. 19. Huguet, A., Grossi, V., Belmahdi, I., Fosse, C., Derenne, S., Archaeal and bacterial tetraether lipids in tropical ponds with contrasting salinity (Guadeloupe, French West Indies): Implications for tetraether–based environmental proxies. Org. Geochem. 83–84 (2015), 158–169. 20. Huguet, C., Hopmans, E.C., Febo-Ayala, W., Thompson, D.H., Sinninghe Damsté, J.S., Schouten, S., An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org. Geochem. 37 (2006), 1036–1041. 21. Kemp, D.B., Robinson, S.A., Crame, J.A., Francis, J.E., Ineson, J., Whittle, R.J., Bowman, V., O'Brien, C., A cool temperate climate on the Antarctic Peninsula through the latest Cretaceous to early Paleogene. Geology 42 (2014), 583–586. 22. Li, J., Pancost, R.D., Naafs, B.D.A., Yang, H., Liu, D., Gong, L., Qiu, X., Xie, S., Multiple environmental and ecological controls on archaeal ether lipid distributions in saline ponds. Chem. Geol., 529, 2019, 119293. 23. Li, X., Liu, W., Water salinity and productivity recorded by ostracod assemblages and their carbon isotopes since the early Holocene at Lake Qinghai on the northeastern Qinghai-Tibet Plateau, China. Palaeogeogr. Palaeoclimatol. Palaeoeco. 407 (2014), 25–33. 24. Liu, W., Li, X., An, Z., Xu, L., Zhang, Q., Total organic carbon isotopes: A novel proxy of lake level from Lake Qinghai in the Qinghai-Tibet Plateau, China. Chem. Geol. 347 (2013), 153–160. 25. Loomis, S.E., Russell, J.M., Ladd, B., Street-Perrott, F.A., Sinninghe Damsté, J.S., Calibration and application of the branched GDGT temperature proxy on East African lake sediments. Earth Planet. Sci. Lett. 357–358 (2012), 277–288. 26. Loomis, S.E., Russell, J.M., Heureux, A.M., D'Andrea, W.J., Sinninghe Damsté, J.S., Seasonal variability of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in a temperate lake system. Geochim. Cosmochim. Acta 144 (2014), 173–187. 27. Loomis, S.E., Russell, J.M., Eggermont, H., Verschuren, D., Sinninghe Damsté, J.S., Effects of temperature, pH and nutrient concentration on branched GDGT distributions in East African lakes: Implications for paleoenvironmental reconstruction. Org. Geochem. 66 (2014), 25–37. 28. Lu, H., Liu, W., Yang, H., Wang, H., Liu, Z., Leng, Q., Sun, Y., Zhou, W., An, Z., 800–kyr land temperature variations modulated by vegetation changes on Chinese Loess Plateau. Nat. Commun., 10, 2019, 1958. 29. Martínez-Sosa, P., Tierney, J.E., Meredith, L.K., Controlled lacustrine microcosms show a brGDGT response to environmental perturbations. Org. Geochem., 145, 2020, 104041. 30. Martin, C., Ménot, G., Thouveny, N., Davtian, N., Andrieu-Ponel, V., Reille, M., Bard, E., Impact of human activities and vegetation changes on the tetraether sources in Lake St Front (Massif Central, France). Org. Geochem. 135 (2019), 38–52. 31. Meyers, P.A., Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org. Geochem. 34 (2003), 261–289. 32. Miller, D.R., Habicht, M.H., Keisling, B.A., Castañeda, I.S., Bradley, R.S., A 900-year New England temperature reconstruction from in situ seasonally produced branched glycerol dialkyl glycerol tetraethers (brGDGTs). Clim. Past 14 (2018), 1653–1667. 33. Naafs, B.D.A., Gallego-Sala, A.V., Inglis, G.N., Pancost, R.D., Refining the global branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature calibration. Org. Geochem. 106 (2017), 48–56. 34. Naafs, B.D.A., Inglis, G.N., Zheng, Y., Amesbury, M.J., Biester, H., Bindler, R., Blewett, J., Burrows, M.A., del Castillo Torres, D., Chambers, F.M., Cohen, A.D., Evershed, R.P., Feakins, S.J., Gałka, M., Gallego-Sala, A., Gandois, L., Gray, D.M., Hatcher, P.G., Honorio Coronado, E.N., Hughes, P.D.M., Huguet, A., Könönen, M., Laggoun-Défarge, F., Lähteenoja, O., Lamentowic, M., Marchant, R., McClymont, E., Pontevedra-Pombal, X., Ponton, C., Pourmand, A., Rizzuti, A.M., Rochefort, L., Schellekens, J., De Vleeschouwer, F., Pancost, R.D., Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids. Geochim. Cosmochim. Acta 208 (2017), 285–301. 35. Naafs, B.D.A., Rohrssen, M., Inglis, G.N., Lähteenoja, O., Feakins, S.J., Collinson, M.E., Kennedy, E.M., Singh, P.K., Singh, M.P., Lunt, D.J., Pancost, R.D., High temperatures in the terrestrial mid–latitudes during the early Palaeogene. Nat. Geosci. 11 (2018), 766–771. 36. Ning, D., Zhang, E., Shulmeister, J., Chang, J., Sun, W., Ni, Z., Holocene mean annual air temperature (MAAT) reconstruction based on branched glycerol dialkyl glycerol tetraethers from Lake Ximenglongtan, southwestern China. Org. Geochem. 133 (2019), 65–76. 37. Pearson, E.J., Juggins, S., Talbot, H.M., Weckström, J., Rosén, P., Ryves, D.B., Roberts, S.J., Schmidt, R., A lacustrine GDGT-temperature calibration from the Scandinavian Arctic to Antarctic: Renewed potential for the application of GDGT–paleothermometry in lakes. Geochim. Cosmochim. Acta 75 (2011), 6225–6238. 38. Peterse, F., van der Meer, J., Schouten, S., Weijers, J.W.H., Fierer, N., Jackson, R.B., Kim, J.-H., Sinninghe Damsté, J.S., Revised calibration of the MBT–CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochim. Cosmochim. Acta 96 (2012), 215–229. 39. Peterse, F., Vonk, J.E., Holmes, R.M., Giosan, L., Zimov, N., Eglinton, T.I., Branched glycerol dialkyl glycerol tetraethers in Arctic lake sediments: Sources and implications for paleothermometry at high latitudes. J. Geophys. Res. Biogeosci. 119 (2014), 1738–1754. 40. Qian, S., Yang, H., Dong, C., Wang, Y., Wu, J., Pei, H., Dang, X., Lu, J., Zhao, S., Xie, S., Rapid response of fossil tetraether lipids in lake sediments to seasonal environmental variables in a shallow lake in central China: Implications for the use of tetraether–based proxies. Org. Geochem. 128 (2019), 108–121. 41. Russell, J.M., Hopmans, E.C., Loomis, S.E., Liang, J., Sinninghe Damsté, J.S., Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: Effects of temperature, pH, and new lacustrine paleotemperature calibrations. Org. Geochem. 117 (2018), 56–69. 42. Schouten, S., Hopmans, E.C., Sinninghe Damsté, J.S., The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Org. Geochem. 54 (2013), 19–61. 43. Shanahan, T.M., Hughen, K.A., Van Mooy, B.A.S., Temperature sensitivity of branched and isoprenoid GDGTs in Arctic lakes. Org. Geochem. 64 (2013), 119–128. 44. Schoon, P.L., de Kluijver, A., Middelburg, J.J., Downing, J.A., Sinninghe Damsté, J.S., Schouten, S., Influence of lake water pH and alkalinity on the distribution of core and intact polar branched glycerol dialkyl glycerol tetraethers (GDGTs) in lakes. Org. Geochem. 60 (2013), 72–82. 45. Sinninghe Damsté, J.S., Hopmans, E.C., Pancost, R.D., Schouten, S., Geenevasen, J.A.J., Newly discovered non–isoprenoid dialkyl diglycerol tetraether lipids in sediments. Journal of the Chemical Society. Chem. Commun. 23 (2000), 1683–1684. 46. Sun, Q., Chu, G., Liu, M., Xie, M., Li, S., Ling, Y., Wang, X., Shi, L., Jia, G., Lü, H., Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal. J. Geophys. Res. Biogeosci., 116, 2011, G01008. 47. Tierney, J.E., Russell, J.M., Eggermont, H., Hopmans, E.C., Verschuren, D., Sinninghe Damsté, J.S., Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments. Geochim. Cosmochim. Acta 74 (2010), 4902–4918. 48. Turich, C., Freeman, K.H., Archaeal lipids record paleosalinity in hypersaline systems. Org. Geochem. 42 (2011), 1147–1157. 49. Walton, N.R.G., Electrical conductivity and total dissolved solids—what is their precise relationship?. Desalination 72 (1989), 275–292. 50. Wang, Y., Shen, J., Xu, X., Liu, X., Sirocko, F., Zhang, E., Ji, J., Environmental changes during the past 13500 cal. a BP deduced from lacustrine sediment records of Lake Qinghai, China. Chin. J. Geochem. 30 (2011), 479–489. 51. Wang, H., Liu, W., Zhang, C.L., Jiang, H., Dong, H., Lu, H., Wang, J., Assessing the ratio of archaeol to caldarchaeol as a salinity proxy in highland lakes on the northeastern Qinghai-Tibetan Plateau. Org. Geochem. 54 (2013), 69–77. 52. Wang, H., Dong, H., Zhang, C.L., Jiang, H., Zhao, M., Liu, Z., Lai, Z., Liu, W., Water depth affecting thaumarchaeol production in Lake Qinghai, northeastern Qinghai-Tibetan plateau: Implications for paleo lake levels and paleoclimate. Chem. Geol. 368 (2014), 76–84. 53. Wang, H., Dong, H., Zhang, C.L., Jiang, H., Liu, Z., Zhao, M., Liu, W., Deglacial and Holocene archaeal lipid-inferred paleohydrology and paleotemperature history of Lake Qinghai, northeastern Qinghai-Tibetan Plateau. Quat. Res. 83 (2015), 116–126. 54. Wang, H., Liu, W., Lu, H., Appraisal of branched glycerol dialkyl glycerol tetraether-based indices for North China. Org. Geochem. 98 (2016), 118–130. 55. Wang, H., He, Y., Liu, W., Zhou, A., Kolpakova, M., Krivonogov, S., Liu, Z., Lake water depth controlling archaeal tetraether distributions in midlatitude Asia: Implications for paleo lake-level reconstruction. Geophys. Res. Lett. 46 (2019), 5274–5283. 56. Wang, M.D., Liang, J., Hou, J.Z., Hu, L., Distribution of GDGTs in lake surface sediments on the Tibetan Plateau and its influencing factors. Sci. China Earth Sci. 59 (2016), 961–974. 57. Wang, Z., Liu, Z., Zhang, F., Fu, M., An, Z., A new approach for reconstructing Holocene temperatures from a multi-species long chain alkenone record from Lake Qinghai on the northeastern Tibetan Plateau. Org. Geochem. 88 (2015), 50–58. 58. Weber, Y., De Jonge, C., Rijpstra, W.I.C., Hopmans, E.C., Stadnitskaia, A., Schubert, C.J., Lehmann, M.F., Sinninghe Damsté, J.S., Niemann, H., Identification and carbon isotope composition of a novel branched GDGT isomer in lake sediments: Evidence for lacustrine branched GDGT production. Geochim. Cosmochim. Acta 154 (2015), 118–129. 59. Weber, Y., Sinninghe Damsté, J.S., Zopfi, J., De Jonge, C., Gilli, A., Schubert, C.J., Lepori, F., Lehmann, M.F., Niemann, H., Redox-dependent niche differentiation provides evidence for multiple bacterial sources of glycerol tetraether lipids in lakes. Proc. Natl. Acad. Sci. U.S.A., 115, 2018, 10926. 60. Weijers, J.W.H., Schouten, S., Geenevasen, J.A.J., David, O.R.P., Coleman, J., Pancost, R.D., Sinninghe Damsté, J.S., Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ. Microbiol. 8 (2006), 648–657. 61. Weijers, J.W.H., Schouten, S., van den Donker, J.C., Hopmans, E.C., Sinninghe Damsté, J.S., Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim. Cosmochim. Acta 71 (2007), 703–713. 62. Yao, Y., Zhao, J., Vachula, R.S., Werne, J.P., Wu, J., Song, X., Huang, Y., Correlation between the ratio of 5-methyl hexamethylated to pentamethylated branched GDGTs (HP5) and water depth reflects redox variations in stratified lakes. Org. Geochem., 147, 2020, 104076. 63. Zhang, P.X., Zhang, B.Z., Qian, G.M., Li, H.J., Xu, L.M., The study of paleoclimatic parameter of Qinghai Lake since Holocene. Quat. Sci. 3 (1994), 225–238. 64. Zhao, B., Castañeda, I.S., Bradley, R.S., Salacup, J.M., Wet, G.A.D., Daniels, W.C., Schneider, T., Development of an in situ branched GDGT calibration in Lake 578, southern Greenland. Org. Geochem., 152, 2020, 104168. 65. Zhao, C., Rohling, E.J., Liu, Z., Yang, X., Zhang, E., Cheng, J., Liu, Z., An, Z., Yang, X., Feng, X., Sun, X., Zhang, C., Yan, T., Long, H., Yan, H., Yu, Z., Liu, W., Yu, S.-Y., Shen, J., Possible obliquity-forced warmth in southern Asia during the last glacial stage. Sci. Bull., 2020, 10.1016/j.scib.2020.11.016. 66. Zink, K.J., Vandergous, M.J., Mangelsdorf, K., Dieffenbacher, A.C., Schwark, L., Application of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) to develop modern and past temperature estimates from New Zealand lakes. Org. Geochem. 41 (2010), 1060–1066.