Инд. авторы: Shikin A.M., Rybkina A.A., Estyunin D.A., Klimovskikh I.I., Rybkin A.G., Filnov S.O., Koroleva A.V., Shevchenko E.V., Likholetova M.V., Voroshnin V.Y., Petukhov A.E., Kokh K.A., Tereshchenko O.E., Petaccia L., Di S.G., Kumar S., Kimura A., Skirdkov P.N., Zvezdin K.A., Zvezdin A.K.
Заглавие: Non-monotonic variation of the kramers point band gap with increasing magnetic doping in bitei
Библ. ссылка: Shikin A.M., Rybkina A.A., Estyunin D.A., Klimovskikh I.I., Rybkin A.G., Filnov S.O., Koroleva A.V., Shevchenko E.V., Likholetova M.V., Voroshnin V.Y., Petukhov A.E., Kokh K.A., Tereshchenko O.E., Petaccia L., Di S.G., Kumar S., Kimura A., Skirdkov P.N., Zvezdin K.A., Zvezdin A.K. Non-monotonic variation of the kramers point band gap with increasing magnetic doping in bitei // Scientific Reports. - 2021. - Vol.11. - Iss. 1. - Art.23332. - ISSN 2045-2322.
Внешние системы: DOI: 10.1038/s41598-021-02493-8; РИНЦ: 47319641;
Реферат: eng: Polar Rashba-type semiconductor BiTeI doped with magnetic elements constitutes one of the most promising platforms for the future development of spintronics and quantum computing thanks to the combination of strong spin-orbit coupling and internal ferromagnetic ordering. The latter originates from magnetic impurities and is able to open an energy gap at the Kramers point (KP gap) of the Rashba bands. In the current work using angle-resolved photoemission spectroscopy (ARPES) we show that the KP gap depends non-monotonically on the doping level in case of V-doped BiTeI. We observe that the gap increases with V concentration until it reaches 3% and then starts to mitigate. Moreover, we find that the saturation magnetisation of samples under applied magnetic field studied by superconducting quantum interference device (SQUID) magnetometer has a similar behaviour with the doping level. Theoretical analysis shows that the non-monotonic behavior can be explained by the increase of antiferromagnetic coupled atoms of magnetic impurity above a certain doping level. This leads to the reduction of the total magnetic moment in the domains and thus to the mitigation of the KP gap as observed in the experiment. These findings provide further insight in the creation of internal magnetic ordering and consequent KP gap opening in magnetically-doped Rashba-type semiconductors.
Издано: 2021
Физ. характеристика: 23332
Цитирование: 1. Sau, J. D., Lutchyn, R. M., Tewari, S. & Sarma, S. D. Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104, 040502 (2010). 2. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018). 3. Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521-526 (2011). 4. Maaß, H. et al. Spin-texture inversion in the giant Rashba semiconductor BiTeI. Nat. Commun. 7, 1-7 (2016). 5. Eremeev, S., Nechaev, I. & Chulkov, E. V. Giant Rashba-type spin splitting at polar surfaces of BiTeI. JETP Lett. 96, 437-444 (2012). 6. Eremeev, S. V., Nechaev, I. A., Koroteev, Y. M., Echenique, P. M. & Chulkov, E. V. Ideal two-dimensional electron systems with a giant Rashba-type spin splitting in real materials: Surfaces of bismuth tellurohalides. Phys. Rev. Lett. 108, 246802 (2012). 7. Landolt, G. et al. Disentanglement of surface and bulk Rashba spin splittings in noncentrosymmetric BiTeI. Phys. Rev. Lett. 109, 116403 (2012). 8. Crepaldi, A. et al. Giant ambipolar Rashba effect in the semiconductor BiTeI. Phys. Rev. Lett. 109, 096803 (2012). 9. Klimovskikh, I. I. et al. Giant magnetic band gap in the Rashba-split surface state of Vanadium-doped BiTeI: A combined photoemission and ab initio study. Sci. Rep. 7, 1-8 (2017). 10. Chen, Y. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659-662 (2010). 11. Xu, S.-Y. et al. Hedgehog spin texture and Berry's phase tuning in a magnetic topological insulator. Nat. Phys. 8, 616-622 (2012). 12. Shikin, A. M. et al. Signatures of in-plane and out-of-plane magnetization generated by synchrotron radiation in magnetically doped and pristine topological insulators. Phys. Rev. B 97, 245407 (2018). 13. Shikin, A. et al. Dirac gap opening and Dirac-fermion-mediated magnetic coupling in antiferromagnetic Gd-doped topological insulators and their manipulation by synchrotron radiation. Sci. Rep. 9, 1-17 (2019). 14. Shikin, A. et al. Gap opening mechanism at the dirac point in the electronic spectrum of Gd-doped topological insulator. Phys. Solid State 62, 338-349 (2020). 15. Shikin, A. M. et al. Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2 Te4. Sci. Rep. 10, 13226. https://doi.org/10.1038/s41598-020-70089-9 (2020). 16. Estyunin, D. A. et al. Signatures of temperature driven antiferromagnetic transition in the electronic structure of topological insulator MnBi2 Te4. APL Mater. 8, 021105. https://doi.org/10.1063/1.5142846 (2020). 17. Ogawa, N., Bahramy, M., Murakawa, H., Kaneko, Y. & Tokura, Y. Magnetophotocurrent in BiTeI with Rashba spin-split bands. Phys. Rev. B 88, 035130 (2013). 18. Kovács-Krausz, Z. et al. Electrically controlled spin injection from giant Rashba spin-orbit conductor BiTeBr. Nano Lett. 20(7), 4782-4791 (2020). 19. Ogawa, N., Bahramy, M., Kaneko, Y. & Tokura, Y. Photocontrol of Dirac electrons in a bulk Rashba semiconductor. Phys. Rev. B 90, 125122 (2014). 20. Koga, T., Nitta, J., Takayanagi, H. & Datta, S. Spin-filter device based on the Rashba effect using a nonmagnetic resonant tunneling diode. Phys. Rev. Lett. 88, 126601 (2002). 21. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004). 22. Kovács-Krausz, Z. et al. Electrically controlled spin injection from giant Rashba spin-orbit conductor BiTeBr. Nano Lett. 20, 4782-4791 (2020). 23. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Physics-Uspekhi 44, 131 (2001). 24. Tewari, S., Stanescu, T. D., Sau, J. D. & Sarma, S. D. Topologically non-trivial superconductivity in spin-orbit-coupled systems: Bulk phases and quantum phase transitions. New J. Phys. 13, 065004 (2011). 25. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008). 26. Alicea, J., Oreg, Y., Refael, G., von Oppen, F. & Fisher, M. P. A. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412-417 (2011). 27. Nadj-Perge, S., Drozdov, I. K., Bernevig, B. A. & Yazdani, A. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B 88, 020407 (2013). 28. Shikin, A. et al. Anomalously large gap and induced out-of-plane spin polarization in magnetically doped 2D Rashba system: V-doped BiTeI. 2D Mater. 4, 025055 (2017). 29. Krempaskỳ, J. et al. Entanglement and manipulation of the magnetic and spin-orbit order in multiferroic Rashba semiconductors. Nat. Commun. 7, 1-7 (2016). 30. Krempaskỳ, J. et al. Spin-resolved electronic structure of ferroelectric α-GeTe and multiferroic Ge1- xMnxTe. J. Phys. Chem. Solids 128, 237-244 (2019). 31. Zhang, P. et al. A precise method for visualizing dispersive features in image plots. Rev. Sci. Instrum. 82, 043712. https://doi.org/ 10.1063/1.3585113 (2011). 32. Iwasawa, H. et al. Development of laser-based scanning µ-ARPES system with ultimate energy and momentum resolutions. Ultramicroscopy 182, 85-91 (2017). 33. Arrott, A. & Noakes, J. E. Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett. 19, 786-789. https:// doi.org/10.1103/PhysRevLett.19.786 (1967). 34. Arrott, A. Equations of state along the road to Arrott's last plot. J. Magn. Magn. Mater. 322, 1047-1051. https://doi.org/10.1016/j. jmmm.2009.06.044 (2010). 35. Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416-422. https://doi. org/10.1038/s41586-019-1840-9 (2019). 36. Alfonsov, A. et al. Strongly anisotropic spin dynamics in magnetic topological insulators. Phys. Rev. B 103, L180403. https://doi. org/10.1103/PhysRevB.103.L180403 (2021). 37. Katriel, J. Continued-fraction approximation for the inverse Brillouin function. Physica Status Solidi (b) 139, 307-310 (1987).