Инд. авторы: Shatskiy A.F., Podborodnikov I.V., Arefiev A.V., Bekhtenova A.E, Vinogradova Y.G., Stepanov K.M., Litasov K.D.
Заглавие: Pyroxene-carbonate reactions in the camgsi2o6 ± naalsi2o6 + mgco3 ± na2co3 ± k2co3 system at 3–6 gpa: implications for partial melting of carbonated peridotite
Библ. ссылка: Shatskiy A.F., Podborodnikov I.V., Arefiev A.V., Bekhtenova A.E, Vinogradova Y.G., Stepanov K.M., Litasov K.D. Pyroxene-carbonate reactions in the camgsi2o6 ± naalsi2o6 + mgco3 ± na2co3 ± k2co3 system at 3–6 gpa: implications for partial melting of carbonated peridotite // Contributions to Mineralogy and Petrology. - 2021. - Vol.176. - Iss. 5. - ISSN 0010-7999. - EISSN 1432-0967.
Внешние системы: DOI: 10.1007/s00410-021-01790-9; РИНЦ: 46835562;
Реферат: eng: The reactions between pyroxenes and carbonates have been studied in the CaMgSi2O6 + MgCO3 (Di + 2Mgs), CaMgSi2O6 + NaAlSi2O6 + 2MgCO3 (Di + Jd + 2Mgs), CaMgSi2O6 + Na2Mg(CO3)2 (Di + Eit), and CaMgSi2O6 + K2Mg(CO3)2 (Di + K2Mg) systems at pressures of 3.0 and 4.5 GPa in the temperature range 850–1300 °C and compared with those established previously at 6.0 GPa. The Di + 2Mgs solidus locates at 1220 °C / 3 GPa and 1400 °C / 6 GPa. Near-solidus melt is carbonatitic with SiO2 < 4 wt% and Ca# 56. The Di + Jd + 2Mgs solidus locates near 1050 °C at 3 GPa, rises to 1200 °C at 4.5 GPa, and 1350 °C at 6 GPa. The solidus is controlled by the reaction: 4NaAlSi2O6·2CaMgSi2O6 (clinopyroxene) + 12MgCO3 (magnesite) = 2MgAl2SiO6·5Mg2Si2O6 (clinopyroxene) + 2[Na2CO3·CaCO3·MgCO3] (liquid) + 6CO2. As pressure increases, the composition of solidus melt evolves from 26Na2CO3∙74Ca0.58Mg0.42CO3 at 3 GPa to 10Na2CO3∙90Ca0.50Mg0.50CO3 at 6 GPa. Melting in the Di + Eit and Di + K2Mg systems is controlled by the reactions: CaMgSi2O6 (clinopyroxene) + 2(Na or K)2 Mg(CO3)2 (eitelite) = Mg2Si2O6 (orthopyroxene) + 2[(Na or K)2CO3∙Ca0.5Mg0.5CO3] (liquid). The Di + Eit solidus locates at 925 °C / 3 GPa and 1100 °C / 6 GPa, whereas the Di + K2Mg solidus is located at 50 °C lower. The resulting melts have alkali-rich carbonate compositions, (Na or K)2CO3∙Ca0.4Mg0.6CO3. The obtained results suggest that most carbonates belong to the ultramafic suite would survive during subduction into the deep mantle and experience partial melting involving alkaline carbonates, eitelite or K2Mg(CO3)2, under geothermal conditions of the subcontinental lithospheric mantle (35–40 mW/m2). On the other hand, the jadeite component in clinopyroxene would be an important fluxing agent responsible for the partial melting of carbonated rocks under the rift margin geotherm (60 mW/m2) at a depth of about 100 km, yielding the formation of Na-carbonatite melt.
Ключевые слова: carbonate; carbonatite melt; clinopyroxene; Earth's mantle; alkalis; high-pressure experiment;
Издано: 2021
Цитирование: 1. Abersteiner A, Giuliani A, Kamenetsky VS, Phillips D (2017) Petrographic and melt-inclusion constraints on the petrogenesis of a magmaclast from the Venetia kimberlite cluster, South Africa. Chem Geol 455:331–341. 10.1016/j.chemgeo.2016.08.029 DOI: 10.1016/j.chemgeo.2016.08.029 2. Abersteiner A, Kamenetsky VS, Golovin AV, Kamenetsky M, Goemann K (2018) Was crustal contamination involved in the formation of the serpentine-free Udachnaya-East kimberlite? New insights into parental melts, liquidus assemblage and effects of alteration. J Petrol 59(8):1467–1492 DOI: 10.1093/petrology/egy068 3. Agashev AM, Pokhilenko NR, Takazawa E, McDonald JA, Vavilov MA, Watanabe I, Sobolev NV (2008) Primary melting sequence of a deep (> 250 km) lithospheric mantle as recorded in the geochemistry of kimberlite-carbonatite assemblages, Snap Lake dyke system, Canada. Chem Geol 255(3–4):317–328. 10.1016/j.chemgeo.2008.07.003 DOI: 10.1016/j.chemgeo.2008.07.003 4. Arefiev AV, Shatskiy A, Podborodnikov IV, Litasov KD (2018) Melting and subsolidus phase relations in the system K2CO3-MgCO3 at 3 GPa. High Press Res 38(4):422–439. 10.1080/08957959.2018.1541988 DOI: 10.1080/08957959.2018.1541988 5. Arefiev AV, Shatskiy A, Podborodnikov IV, Behtenova A, Litasov KD (2019a) The system K2CO3–CaCO3–MgCO3 at 3 GPa: Implications for carbonatite melt compositions in the subcontinental lithospheric mantle. Minerals 9(5):296. 10.3390/min9050296 DOI: 10.3390/min9050296 6. Arefiev AV, Shatskiy A, Podborodnikov IV, Litasov KD (2019b) The K2CO3–CaCO3–MgCO3 system at 6 GPa: implications for diamond forming carbonatitic melts. Minerals 9:558. 10.3390/min9090558 DOI: 10.3390/min9090558 7. Bekhtenova A, Shatskiy A, Podborodnikov IV, Arefiev AV, Litasov KD (2021) Phase relations in carbonate component of carbonatized eclogite and peridotite along subduction and continental geotherms. Gondwana Res 94:186–200 DOI: 10.1016/j.gr.2021.02.019 8. Bell DR, Schmitz MD, Janney PE (2003) Mesozoic thermal evolution of the southern African mantle lithosphere. Lithos 71(2–4):273–287 DOI: 10.1016/S0024-4937(03)00117-8 9. Brey G, Köhler T (1990) Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31(6):1353–1378 DOI: 10.1093/petrology/31.6.1353 10. Brey G, Brice WR, Ellis DJ, Green DH, Harris KL, Ryabchikov ID (1983) Pyroxene-carbonate reactions in the upper mantle. Earth Planet Sci Lett 62(1):63–74. 10.1016/0012-821x(83)90071-7 DOI: 10.1016/0012-821x(83)90071-7 11. Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49(4):797–821. 10.1093/petrology/egn002 DOI: 10.1093/petrology/egn002 12. Brey GP, Bulatov VK, Girnis AV (2011) Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle. Chem Geol 281(3–4):333–342. 10.1016/j.chemgeo.2010.12.019 DOI: 10.1016/j.chemgeo.2010.12.019 13. Cannaò E, Scambelluri M, Bebout GE, Agostini S, Pettke T, Godard M, Crispini L (2020) Ophicarbonate evolution from seafloor to subduction and implications for deep-Earth C cycling. Chem Geol 546:119626 DOI: 10.1016/j.chemgeo.2020.119626 14. Dalton JA, Presnall DC (1998) Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa. Contrib Miner Petrol 131(2–3):123–135. 10.1007/s004100050383 DOI: 10.1007/s004100050383 15. Dasgupta R (2018) Volatile-bearing partial melts beneath oceans and continents–where, how much, and of what compositions? Am J Sci 318(1):141–165 DOI: 10.2475/01.2018.06 16. Dasgupta R, Hirschmann MM (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440(7084):659–662. 10.1038/nature04612 DOI: 10.1038/nature04612 17. Dasgupta R, Hirschmann MM (2007) Effect of variable carbonate concentration on the solidus of mantle peridotite. Am Miner 92(2–3):370–379. 10.2138/am.2007.2201 DOI: 10.2138/am.2007.2201 18. Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite+CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48(11):2093–2124 DOI: 10.1093/petrology/egm053 19. Decker DL, Bassett WA, Merrill L, Hall HT, Barnett JD (1972) High-pressure calibration a critical review. J Phys Chem Ref Data 1:1–79 DOI: 10.1063/1.3253105 20. Dobson DP, Jones AP, Rabe R, Sekine T, Kurita K, Taniguchi T, Kondo T, Kato T, Shimomura O, Urakawa S (1996) In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet Sci Lett 143:207–215 DOI: 10.1016/0012-821X(96)00139-2 21. Drewitt JWE, Walter MJ, Zhang H, McMahon SC, Edwards D, Heinen BJ, Lord OT, Anzellini S, Kleppe AK (2019) The fate of carbonate in oceanic crust subducted into earth’s lower mantle. Earth Planet Sci Lett 511:213–222 DOI: 10.1016/j.epsl.2019.01.041 22. Eggler DH (1975) Peridotite-carbonate relations in the system CaO-MgO-SiO2-CO2. Carnegie Inst Wash Yearb 74:468–474 23. Enggist A, Luth RW (2016) Phase relations of phlogopite and pyroxene with magnesite from 4 to 8 GPa: KCMAS–H2O and KCMAS–H2O–CO2. Contrib Miner Petrol 171(11):88 DOI: 10.1007/s00410-016-1304-2 24. Enggist A, Chu LL, Luth RW (2012) Phase relations of phlogopite with magnesite from 4 to 8 GPa. Contrib Miner Petrol 163(3):467–481. 10.1007/s00410-011-0681-9 DOI: 10.1007/s00410-011-0681-9 25. Falloon TJ, Green DH (1989) Solidus of carbonated fertile peridotite. Earth Planet Sci Lett 94(3–4):364–370. 10.1016/0012-821x(89)90153-2 DOI: 10.1016/0012-821x(89)90153-2 26. Giuliani A, Kamenetsky VS, Phillips D, Kendrick MA, Wyatt BA, Goemann K (2012) Nature of alkali-carbonate fluids in the sub-continental lithospheric mantle. Geology 40(11):967–970. 10.1130/G33221.1 DOI: 10.1130/G33221.1 27. Giuliani A, Soltys A, Phillips D, Kamenetsky VS, Maas R, Goemann K, Woodhead JD, Drysdale RN, Griffin WL (2017) The final stages of kimberlite petrogenesis: petrography, mineral chemistry, melt inclusions and Sr-CO isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chem Geol 455:342–356 DOI: 10.1016/j.chemgeo.2016.10.011 28. Golovin A, Sharygin I, Kamenetsky V, Korsakov A, Yaxley G (2018) Alkali-carbonate melts from the base of cratonic lithospheric mantle: links to kimberlites. Chem Geol 483(4):261–274. 10.1016/j.chemgeo.2018.02.016 DOI: 10.1016/j.chemgeo.2018.02.016 29. Golovin A, Sharygin I, Korsakov A, Kamenetsky V, Abersteiner A (2019) Can primitive kimberlite melts be alkali-carbonate liquids: composition of the melt snapshots preserved in deepest mantle xenoliths. J Raman Spectrosc 50:1849–1867. 10.1002/jrs.5701 DOI: 10.1002/jrs.5701 30. Grassi D, Schmidt MW (2011) The melting of carbonated pelites from 70 to 700 km depth. J Petrol 52(4):765–789. 10.1093/petrology/egr002 DOI: 10.1093/petrology/egr002 31. Hammouda T, Laporte D (2000) Ultrafast mantle impregnation by carbonatite melts. Geology 28(3):283–285 DOI: 10.1130/0091-7613(2000)28<283:UMIBCM>2.0.CO;2 32. Hemingway BS, Bohlen SR, Hankins W, Westrum EF, Kuskov OL (1998) Heat capacity and thermodynamic properties for coesite and jadeite, reexamination of the quartz-coesite equilibrium boundary. Am Miner 83(3–4):409–418 DOI: 10.2138/am-1998-5-601 33. Hernlund J, Leinenweber K, Locke D, Tyburczy JA (2006) A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. Am Miner 91(2–3):295–305. 10.2138/am.2006.1938 DOI: 10.2138/am.2006.1938 34. Jablon BM, Navon O (2016) Most diamonds were created equal. Earth Planet Sci Lett 443:41–47. 10.1016/j.epsl.2016.03.013 DOI: 10.1016/j.epsl.2016.03.013 35. Kamenetsky MB, Sobolev AV, Kamenetsky VS, Maas R, Danyushevsky LV, Thomas R, Pokhilenko NP, Sobolev NV (2004) Kimberlite melts rich in alkali chlorides and carbonates: A potent metasomatic agent in the mantle. Geology 32(10):845–848. 10.1130/g20821.1 DOI: 10.1130/g20821.1 36. Kamenetsky VS, Kamenetsky MB, Weiss Y, Navon O, Nielsen TFD, Mernagh TP (2009) How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos 112:334–346. 10.1016/j.lithos.2009.03.032 DOI: 10.1016/j.lithos.2009.03.032 37. Kaminsky F, Wirth R, Matsyuk S, Schreiber A, Thomas R (2009) Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas. Mineral Mag 73(5):797–816. 10.1180/minmag.2009.073.5.797 DOI: 10.1180/minmag.2009.073.5.797 38. Kaminsky FV, Wirth R, Schreiber A (2013) Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association. Can Mineral 51(5):669–688. 10.3749/canmin.51.5.669 DOI: 10.3749/canmin.51.5.669 39. Katsura T, Yoneda A, Yamazaki D, Yoshino T, Ito E (2010) Adiabatic temperature profile in the mantle. Phys Earth Planet Inter 183(1–2):212–218. 10.1016/j.pepi.2010.07.001 DOI: 10.1016/j.pepi.2010.07.001 40. Kerrick D, Connolly J (1998) Subduction of ophicarbonates and recycling of CO2 and H2O. Geology 26(4):375–378 DOI: 10.1130/0091-7613(1998)026<0375:SOOARO>2.3.CO;2 41. Kiseeva ES, Yaxley GM, Hermann J, Litasov KD, Rosenthal A, Kamenetsky VS (2012) An experimental study of carbonated eclogite at 3.5–5.5 GPa—implications for silicate and carbonate metasomatism in the cratonic mantle. J Petrol 53(4):727–759 DOI: 10.1093/petrology/egr078 42. Klein-BenDavid O, Logvinova AM, Schrauder M, Spetius ZV, Weiss Y, Hauri EH, Kaminsky FV, Sobolev NV, Navon O (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds - a new type of diamond-forming fluid. Lithos 112(S2):648–659. 10.1016/j.lithos.2009.03.015 DOI: 10.1016/j.lithos.2009.03.015 43. Kono Y, Kenney-Benson C, Hummer D, Ohfuji H, Park C, Shen G, Wang Y, Kavner A, Manning CE (2014) Ultralow viscosity of carbonate melts at high pressures. Nat Commun 5:5091 DOI: 10.1038/ncomms6091 44. Kushiro I, Satake H, Akimoto S (1975) Carbonate-silicate reactions at high presures and possible presence of dolomite and magnesite in the upper mantle. Earth Planet Sci Lett 28(2):116–120. 10.1016/0012-821x(75)90218-6 DOI: 10.1016/0012-821x(75)90218-6 45. Lavrentev YG, Karmanov NS, Usova LV (2015) Electron probe microanalysis of minerals: microanalyzer or scanning electron microscope? Russ Geol Geophys 56(8):1154–1161. 10.1016/j.rgg.2015.07.006 DOI: 10.1016/j.rgg.2015.07.006 46. Litasov KD, Shatskiy A (2018) Carbon-bearing magmas in the Earth’s deep interior. In: Kono Y, Sanloup C (eds) Magmas under pressure advances in high-pressure experiments on structure and properties of melts. Elsevier, Amsterdam, pp 43–82 47. Litasov KD, Shatskiy AF (2019) MgCO3 + SiO2 reaction at pressures up to 32 GPa studied using in-situ X-ray diffraction and synchrotron radiation. Geochem Int 57(9):1024–1033. 10.1134/S0016702919090064 DOI: 10.1134/S0016702919090064 48. Litasov KD, Shatskiy A, Ohtani E, Yaxley GM (2013) The solidus of alkaline carbonatite in the deep mantle. Geology 41(1):79–82. 10.1130/G33488.1 DOI: 10.1130/G33488.1 49. Logvinova AM, Shatskiy A, Wirth R, Tomilenko AA, Ugap’eva SS, Sobolev NV (2019) Carbonatite melt in type Ia gem diamond. Lithos 342–343:463–467. 10.1016/j.lithos.2019.06.010 DOI: 10.1016/j.lithos.2019.06.010 50. Martirosyan NS, Litasov KD, Shatskiy A, Ohtani E (2015) The reactions between iron and magnesite at 6 GPa and 1273–1873 K: implication to reduction of subducted carbonate in the deep mantle. J Mineral Petrol Sci 110(2):49–59 DOI: 10.2465/jmps.141003a 51. Martirosyan N, Yoshino T, Shatskiy A, Chanyshev A, Litasov K (2016) The CaCO3–Fe interaction: kinetic approach for carbonate subduction to the deep Earth’s mantle. Phys Earth Planet Inter 259:1–9 DOI: 10.1016/j.pepi.2016.08.008 52. Martirosyan NS, Litasov KD, Lobanov SS, Goncharov AF, Shatskiy A, Ohfuji H, Prakapenka V (2019a) The Mg-carbonatee-Fe interaction: implication for the fate of subducted carbonates and formation of diamond in the lower mantle. Geosci Front 10:1449–1458. 10.1016/j.gsf.2018.10.003 DOI: 10.1016/j.gsf.2018.10.003 53. Martirosyan NS, Shatskiy A, Chanyshev AD, Litasov KD, Podborodnikov IV, Yoshino T (2019b) Effect of water on the magnesite–iron interaction, with implications for the fate of carbonates in the deep mantle. Lithos 326–327:435–445. 10.1016/j.lithos.2019.01.004 DOI: 10.1016/j.lithos.2019.01.004 54. Minarik WG, Watson EB (1995) Interconnectivity of carbonate melt at low melt fraction. Earth Planet Sci Lett 133(3–4):423–437 DOI: 10.1016/0012-821X(95)00085-Q 55. Navon O, Hutcheon I, Rossman G, Wasserburg G (1988) Mantle-derived fluids in diamond micro-inclusions. Nature 335(6193):784–789. 10.1038/335784a0 DOI: 10.1038/335784a0 56. Newton R, Sharp W (1975) Stability of forsterite+CO2 and its bearing on the role of CO2 in the mantle. Earth Planet Sci Lett 26(2):239–244 DOI: 10.1016/0012-821X(75)90091-6 57. Ono S, Kikegawa T, Higo Y (2011) In situ observation of a garnet/perovskite transition in CaGeO3. Phys Chem Miner 38:735–740 DOI: 10.1007/s00269-011-0446-z 58. Podborodnikov IV, Shatskiy A, Arefiev AV, Bekhtenova A, Litasov KD (2019a) New data on the system Na2CO3–CaCO3–MgCO3 at 6 GPa with implications to the composition and stability of carbonatite melts at the base of continental lithosphere. Chem Geol 515:50–60. 10.1016/j.chemgeo.2019.03.027 DOI: 10.1016/j.chemgeo.2019.03.027 59. Podborodnikov IV, Shatskiy A, Arefiev AV, Litasov KD (2019b) Phase relations in the system Na2CO3–CaCO3–MgCO3 at 3 GPa with implications for carbonatite genesis and evolution. Lithos 330–331:74–89. 10.1016/j.lithos.2019.01.035 DOI: 10.1016/j.lithos.2019.01.035 60. Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38:279–296. 10.1016/0040-1951(77)90215-3 DOI: 10.1016/0040-1951(77)90215-3 61. Rashchenko S, Shatskiy A, Litasov K (2020) High-pressure Na-ca carbonates in the deep carbon cycle, chapter 13. In: Manning C, Lin JF, Mao W (eds) Carbon in earth’s interior, vol 250. Wiley, American Geophysical Union, Hoboken, pp 127–137 DOI: 10.1002/9781119508229.ch13 62. Sagatova D, Shatskiy A, Sagatov N, Gavryushkin PN, Litasov KD (2020) Calcium orthocarbonate, Ca2CO4-Pnma: a potential host for subducting carbon in the transition zone and lower mantle. Lithos 370–371:105637. 10.1016/j.lithos.2020.105637 DOI: 10.1016/j.lithos.2020.105637 63. Scambelluri M, Bebout GE, Belmonte D, Gilio M, Campomenosi N, Collins N, Crispini L (2016) Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling. Earth Planet Sci Lett 441:155–166 DOI: 10.1016/j.epsl.2016.02.034 64. Schrauder M, Navon O (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim Cosmochim Acta 58(2):761–771. 10.1016/0016-7037(94)90504-5 DOI: 10.1016/0016-7037(94)90504-5 65. Sharygin IS, Golovin AV, Korsakov AV, Pokhilenko NP (2013) Eitelite in sheared peridotite xenoliths from Udachnaya-East kimberlite pipe (Russia)—a new locality and host rock type. Eur J Mineral 25:825–834. 10.1127/0935-1221/2013/0025-2315 DOI: 10.1127/0935-1221/2013/0025-2315 66. Sharygin IS, Litasov KD, Shatskiy A, Safonov OG, Golovin AV, Ohtani E, Pokhilenko NP (2017) Experimental constraints on orthopyroxene dissolution in alkali-carbonate melts in the lithospheric mantle: implications for kimberlite melt composition and magma ascent. Chem Geol 455:44–56. 10.1016/j.chemgeo.2016.09.030 DOI: 10.1016/j.chemgeo.2016.09.030 67. Shatskiy A, Litasov KD, Terasaki H, Katsura T, Ohtani E (2010) Performance of semi-sintered ceramics as pressure-transmitting media up to 30 GPa. High Press Res 30(3):443–450. 10.1080/08957959.2010.515079 DOI: 10.1080/08957959.2010.515079 68. Shatskiy A, Katsura T, Litasov KD, Shcherbakova AV, Borzdov YM, Yamazaki D, Yoneda A, Ohtani E, Ito E (2011) High pressure generation using scaled-up Kawai-cell. Phys Earth Planet Inter 189(1–2):92–108. 10.1016/j.pepi.2011.08.001 DOI: 10.1016/j.pepi.2011.08.001 69. Shatskiy A, Gavryushkin PN, Sharygin IS, Litasov KD, Kupriyanov IN, Higo Y, Borzdov YM, Funakoshi K, Palyanov YN, Ohtani E (2013a) Melting and subsolidus phase relations in the system Na2CO3-MgCO3+-H2O at 6 GPa and the stability of Na2Mg(CO3)2 in the upper mantle. Am Miner 98(11–12):2172–2182. 10.2138/am.2013.4418 DOI: 10.2138/am.2013.4418 70. Shatskiy A, Sharygin IS, Gavryushkin PN, Litasov KD, Borzdov YM, Shcherbakova AV, Higo Y, Funakoshi K-i, Palyanov YN, Ohtani E (2013b) The system K2CO3-MgCO3 at 6 GPa and 900–1450 °C. Am Miner 98(8–9):1593–1603. 10.2138/am.2013.4407 DOI: 10.2138/am.2013.4407 71. Shatskiy A, Podborodnikov IV, Arefiev AV, Litasov KD, Chanyshev AD, Sharygin IS, Karmanov NS, Ohtani E (2017) Effect of alkalis on the reaction of clinopyroxene with Mg-carbonate at 6 GPa: Implications for partial melting of carbonated lherzolite. Am Miner 102(9):1934–1946. 10.2138/am-2017-6048 DOI: 10.2138/am-2017-6048 72. Shatskiy A, Podborodnikov IV, Arefiev AV, Minin DA, Chanyshev AD, Litasov KD (2018) Revision of the CaCO3–MgCO3 phase diagram at 3 and 6 GPa. Am Miner 103(3):441–452. 10.2138/am-2018-6277 DOI: 10.2138/am-2018-6277 73. Shatskiy A, Arefiev AV, Podborodnikov IV, Litasov KD (2020a) Liquid immiscibility and phase relations in the join KAlSi3O8-CaMg(CO3)2±NaAlSi2O6±Na2CO3 at 6 GPa: implications for diamond-forming melts. Chem Geol 550:119701. 10.1016/j.chemgeo.2020.119701 DOI: 10.1016/j.chemgeo.2020.119701 74. Shatskiy A, Bekhtenova A, Podborodnikov IV, Arefiev AV, Litasov KD (2020b) Carbonate melt interaction with natural eclogite at 6 GPa and 1100–1200 °C: implications for metasomatic melt composition in subcontinental lithospheric mantle. Chem Geol 558:119915. 10.1016/j.chemgeo.2020.119915 DOI: 10.1016/j.chemgeo.2020.119915 75. Shatskiy A, Bekhtenova A, Podborodnikov IV, Arefiev AV, Litasov KD (2020c) Metasomatic interaction of the eutectic Na-and K-bearing carbonate melts with natural garnet lherzolite at 6 GPa and 1100–1200 °C: toward carbonatite melt composition in SCLM. Lithos 374–375:105725. 10.1016/j.lithos.2020.105725 DOI: 10.1016/j.lithos.2020.105725 76. Sokol AG, Kruk AN, Chebotarev DA, Palyanov YN (2016) Carbonatite melt–peridotite interaction at 5.5–7.0 GPa: implications for metasomatism in lithospheric mantle. Lithos 248:66–79 DOI: 10.1016/j.lithos.2016.01.013 77. Stachel T, Luth RW (2015) Diamond formation—where, when and how? Lithos 220:200–220. 10.1016/j.lithos.2015.01.028 DOI: 10.1016/j.lithos.2015.01.028 78. Stagno V, Stopponi V, Kono Y, Manning CE, Irifune T (2018) Experimental determination of the viscosity of Na2CO3 melt between 1.7 and 4.6 GPa at 1200–1700° C: implications for the rheology of carbonatite magmas in the Earth’s upper mantle. Chem Geol 501:19–25 DOI: 10.1016/j.chemgeo.2018.09.036 79. Sun C, Dasgupta R (2019) Slab–mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth Planet Sci Lett 506:38–52 DOI: 10.1016/j.epsl.2018.10.028 80. Sun C, Dasgupta R (2020) Thermobarometry of CO2-rich, silica-undersaturated melts constrains cratonic lithosphere thinning through time in areas of kimberlitic magmatism. Earth Planet Sci Lett 550:116549 DOI: 10.1016/j.epsl.2020.116549 81. Sweeney RJ (1994) Carbonatite melt compositions in the Earth’s mantle. Earth Planet Sci Lett 128(3–4):259–270. 10.1016/0012-821x(94)90149-x DOI: 10.1016/0012-821x(94)90149-x 82. Sweeney R, Falloon T, Green D (1995) Experimental constraints on the possible mantle origin of natrocarbonatite. In: Carbonatite volcanism. Springer, pp 191–207 83. Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183:73–90 DOI: 10.1016/j.pepi.2010.02.004 84. Tappe S, Foley SF, Stracke A, Romer RL, Kjarsgaard BA, Heaman LM, Joyce N (2007) Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr–Nd–Hf–Pb isotope constraints from alkaline and carbonatite intrusives. Earth Planet Sci Lett 256(3–4):433–454 DOI: 10.1016/j.epsl.2007.01.036 85. Thibault Y, Edgar AD (1992) Experimental investigation of melts from a carbonated phlogopite lherzolite: implications for metasomatism in the continental lithospheric mantle. Am Miner 77:784–794 86. Thomson AR, Walter MJ, Kohn SC, Brooker RA (2016) Slab melting as a barrier to deep carbon subduction. Nature 529:76–79. 10.1038/nature16174 DOI: 10.1038/nature16174 87. Tychkov NS, Agashev AM, Malygina EV, Nikolenko EI, Pokhilenko NP (2014) Thermal perturbations in the lithospheric mantle as evidenced from PT equilibrium conditions of xenoliths from the Udachnaya kimberlite pipe. Dokl Earth Sci 454(1):84–88. 10.1134/S1028334X14010231 DOI: 10.1134/S1028334X14010231 88. Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335(6188):343–346 DOI: 10.1038/335343a0 89. Wyllie PJ (1978) Mantle fluid compositions buffered in peridotite-CO2-H2O by carbonates, amphibole, and phlogopite. J Geol 86(6):687–713 DOI: 10.1086/649737 90. Wyllie PJ, Huang W (1975a) Peridotite, kimberlite, and carbonatite explained in the system CaO-MgO-SiO2-CO2. Geology 3:621–624 DOI: 10.1130/0091-7613(1975)3<621:PKACEI>2.0.CO;2 91. Wyllie PJ, Huang WL (1975b) Inflence of mantle CO2 ingeneration of carbonatites and kimberlites. Nature 257(5524):297–299 DOI: 10.1038/257297a0 92. Zedgenizov DA, Ragozin AL, Shatsky VS, Araujo D, Griffin WL, Kagi H (2009) Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 112(S2):638–647. 10.1016/j.lithos.2009.05.008 DOI: 10.1016/j.lithos.2009.05.008