Инд. авторы: Shatskiy A.F., Arefiev A.V., Podborodnikov I.V., Litasov K.D.
Заглавие: Effect of water on carbonate-silicate liquid immiscibility in the system kalsi3o8camgsi2o6-naalsi2o6-camg(co3)2 at 6 gpa: implications for diamond-forming melts
Библ. ссылка: Shatskiy A.F., Arefiev A.V., Podborodnikov I.V., Litasov K.D. Effect of water on carbonate-silicate liquid immiscibility in the system kalsi3o8camgsi2o6-naalsi2o6-camg(co3)2 at 6 gpa: implications for diamond-forming melts // American Mineralogist. - 2021. - Vol.106. - Iss. 2. - P.165-173. - ISSN 0003-004X. - EISSN 1945-3027.
Внешние системы: DOI: 10.2138/am-2020-7551; РИНЦ: 46744107;
Реферат: eng: To clarify the effect of water on carbonate-silicate liquid immiscibility in the diamond stability field, we performed experiments in the system KAlSi3O8-CaMgSi2O6-NaAlSi2O6-CaMg(CO3)2 under nominally dry and hydrous conditions by adding 1.5 wt% H2O at a pressure of 6 GPa and temperatures of 1000 to 1500 °C. Both systems start to melt at 1050–1100 °C. Under anhydrous condition the melting occurs via the following reaction: 6KAlSi3O8 (K-feldspar) + 6CaMg(CO3)2 (dolomite) = 2(Can,Mg1-n)3Al2Si3O12 (garnet) + Al2SiO5 (kyanite) + 11SiO2 (coesite) + 3 K2(Ca1-n, Mgn)2(CO3)3 (carbonatitic melt) + 3CO2 (fluid and/or liquid), where n ~ 0.3–0.4. The carbonatitic melt has the following composition 38(K0.92Na0.08)2CO362Ca0.62Mg0.38CO3. A second immiscible silicic melt containing (in wt%, volatile free) SiO2 = 68.8, Al2O3 = 12.6, CaO = 3.7, MgO = 2.4, Na2O = 1.1, and K2O = 11.3 appears at 1250 °C. Both melts remain stable up to 1500 °C and coexist with the clinopyroxene ± garnet ± coesite residue. In the presence of water stored away in phengite, the melting begins with silicic melt, which contains (in wt%, volatile free) SiO2 = 61.4, Al2O3 = 15.3, CaO = 4.8, MgO = 3.0, Na2O = 2.2, and K2O = 13.3, and coexists with phengite, dolomite, clinopyroxene, and coesite. The phengite + dolomite assemblage remains to 1100 °C and disappears at 1200 °C producing two immiscible melts carbonatitic with approximate composition, 19(K0.89Na0.11)2CO381Ca0.57Mg0.43CO3, and silicic containing (in wt%, volatile free) SiO2 = 63.3, Al2O3 = 15.6, CaO = 4.5, MgO = 3.0, Na2O = 2.0, K2O = 11.6. The present results imply that partial melting of continental material subducted to a depth of 200 km can yield simultaneous formation of two immiscible melts, K-dolomitic and K-aluminosilicate. Under dry conditions, carbonatitic melt appears earlier (at a lower temperature). Given the low density and high mobility of this melt, it must rapidly percolate upward, leaving a refractory eclogite-like residue and leaving no chance for the formation of a second aluminosilicate melt. However, under hydrous conditions silicate melt appears earlier than carbonatitic melt, leaving a phengite- and dolomite-bearing residue, which finally yields the formation of two immiscible silicic and carbonatitic melts. The compositions of these melts fall in the compositional range of carbonatitic and silicic high-density fluids (HDFs) in diamonds worldwide. Thus, we suggest that the presence of water is a necessary requirement for the formation of immiscible HDFs inclusions in diamonds, and this suggestion is strongly supported by natural data from HDFs.
Ключевые слова: Phengite; K-feldspar; high-pressure experiment; High-Density Fluids; Earth's upper mantle; New Advances in Subduction Zone Magma Genesis; diamond formation; Carbonated pelites; Carbonate-silicate liquid immiscibility;
Издано: 2021
Физ. характеристика: с.165-173
Цитирование: 1. Arefiev, A.V., Shatskiy, A., Podborodnikov, I.V., Behtenova, A., and Litasov, K.D. (2019a) The system K2CO3-CaCO3-MgCO3 at 3 GPa: Implications for carbonatite melt compositions in the subcontinental lithospheric mantle. Minerals, 9(5), 296. 2. Arefiev, A.V., Shatskiy, A., Podborodnikov, I.V., and Litasov, K.D. (2019b) The K2CO3-CaCO3-MgCO3 system at 6 GPa: Implications for diamond forming carbonatitic melts. Minerals, 9, 558. 3. Brey, G.P., Bulatov, V.K., Girnis, A.V., and Lahaye, Y. (2008) Experimental melting of carbonated peridotite at 6–10 GPa. Journal of Petrology, 49(4), 797–821. 4. Bulanova, G.P., Novgorodov, P.G., and Pavlova, L.A. (1988) The first find of a melt inclusion in diamond from the Mir pipe. Geokhimia, 756–765 (in Russian). 5. Dasgupta, R., and Hirschmann, M.M. (2007) Effect of variable carbonate concentration on the solidus of mantle peridotite. American Mineralogist, 92, 370–379. 6. Dobson, D.P., Jones, A.P., Rabe, R., Sekine, T., Kurita, K., Taniguchi, T., Kondo, T., Kato, T., Shimomura, O., and Urakawa, S. (1996) In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth and Planetary Science Letters, 143, 207–215. 7. Domanik, K.J., and Holloway, J.R. (1996) The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: Implications for deeply subducted sediments. Geochimica et Cosmochimica Acta, 60(21), 4133–4150. 8. Grassi, D., and Schmidt, M.W. (2011a) Melting of carbonated pelites at 8–13 GPa: Generating K-rich carbonatites for mantle metasomatism. Contributions to Mineralogy and Petrology, 162(1), 169–191. 9. ——— (2011b) The melting of carbonated pelites from 70 to 700 km depth. Journal of Petrology, 52(4), 765–789. 10. Hammouda, T., and Laporte, D. (2000) Ultrafast mantle impregnation by carbonatite melts. Geology, 28(3), 283–285. 11. Hemingway, B.S., Bohlen, S.R., Hankins, W., Westrum, E.F., and Kuskov, O.L. (1998) Heat capacity and thermodynamic properties for coesite and jadeite, reexamination of the quartz-coesite equilibrium boundary. American Mineralogist, 83(3-4), 409–418. 12. Jablon, B.M., and Navon, O. (2016) Most diamonds were created equal. Earth and Planetary Science Letters, 443, 41–47. 13. Klein-BenDavid, O., Logvinova, A.M., Schrauder, M., Spetius, Z.V., Weiss, Y., Hauri, E.H., Kaminsky, F.V., Sobolev, N.V., and Navon, O. (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds—A new type of diamond-forming fluid. Lithos, 112(S2), 648–659. 14. Lavrent’ev, Y.G., Karmanov, N.S., and Usova, L.V. (2015) Electron probe microanalysis of minerals: Microanalyzer or scanning electron microscope? Russian Geology and Geophysics, 56(8), 1154–1161. 15. Logvinova, A.M., Shatskiy, A., Wirth, R., Tomilenko, A.A., Ugap’eva, S.S., and Sobolev, N.V. (2019) Carbonatite melt in type Ia gem diamond. Lithos, 342-343, 463–467. 16. Minarik, W.G., and Watson, E.B. (1995) Interconnectivity of carbonate melt at low melt fraction. Earth and Planetary Science Letters, 133(3-4), 423–437. 17. Navon, O., Hutcheon, I., Rossman, G., and Wasserburg, G. (1988) Mantle-derived fluids in diamond micro-inclusions. Nature, 335, 784–789. 18. Nestola, F., Prencipe, M., Nimis, P., Sgreva, N., Perritt, S., Chinn, I., and Zaffiro, G. (2018) Toward a robust elastic geobarometry of kyanite inclusions in eclogitic diamonds. Journal of Geophysical Research: Solid Earth, 123(8), 6411–6423. 19. Nestola, F., Jacob, D.E., Pamato, M.G., Pasqualetto, L., Oliveira, B., Greene, S., Perritt, S., Chinn, I., Milani, S., and Kueter, N. (2019a) Protogenetic garnet inclusions and the age of diamonds. Geology, 47(5), 431–434. 20. Nestola, F., Zaffiro, G., Mazzucchelli, M.L., Nimis, P., Andreozzi, G.B., Periotto, B., Princivalle, F., Lenaz, D., Secco, L., and Pasqualetto, L. (2019b) Diamond-inclusion system recording old deep lithosphere conditions at Udachnaya (Siberia). Scientific Reports, 9(1), 12586. 21. Nimis, P., Alvaro, M., Nestola, F., Angel, R.J., Marquardt, K., Rustioni, G., Harris, J.W., and Marone, F. (2016) First evidence of hydrous silicic fluid films around solid inclusions in gem-quality diamonds. Lithos, 260, 384–389. 22. Novgorodov, P.G., Bulanova, G.P., Pavlova, L.A., Mikhailov, V.N., Ugarov, V.V., Shebanin, A.P., and Argunov, K.P. (1990) Inclusions of potassic phases, coesite and omphacite in the coated diamond crystal from the “Mir” pipe. Dokl Akad Nauk SSSR Earth Sci, 310, 439–443. 23. Ono, S., Kikegawa, T., and Higo, Y. (2011) In situ observation of a garnet/perovskite transition in CaGeO3. Physics and Chemistry of Minerals, 38, 735–740. 24. Rege, S., Griffin, W.L., Pearson, N., Araújo, D., Zedgenizov, D., and O’Reilly, S.Y. (2010) Trace-element patterns of fibrous and monocrystalline diamonds: Insights into mantle fluids. Lithos, 118(3-4), 313–337. 25. Schrauder, M., and Navon, O. (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochimica et Cosmochimica Acta, 58(2), 761–771. 26. Shatskiy, A., Litasov, K.D., Terasaki, H., Katsura, T., and Ohtani, E. (2010) Performance of semi-sintered ceramics as pressure-transmitting media up to 30 GPa. High Pressure Research, 30(3), 443–450. 27. Shatskiy, A., Sharygin, I.S., Gavryushkin, P.N., Litasov, K.D., Borzdov, Y.M., Shcherbakova, A.V., Higo, Y., Funakoshi, K.-i., Palyanov, Y.N., and Ohtani, E. (2013) The system K2CO3-MgCO3 at 6 GPa and 900–1450 °C. American Mineralogist, 98(8-9), 1593–1603. 28. Shatskiy, A., Podborodnikov, I.V., Arefiev, A.V., Litasov, K.D., Chanyshev, A.D., Sharygin, I.S., Karmanov, N.S., and Ohtani, E. (2017) Effect of alkalis on the reaction of clinopyroxene with Mg-carbonate at 6 GPa: Implications for partial melting of carbonated lherzolite. American Mineralogist, 102(9), 1934–1946. 29. Shatskiy, A., Podborodnikov, I.V., Arefiev, A.V., Minin, D.A., Chanyshev, A.D., and Litasov, K.D. (2018) Revision of the CaCO3-MgCO3 phase diagram at 3 and 6 GPa. American Mineralogist, 103(3), 441–452. 30. Shatskiy, A., Arefiev, A.V., Podborodnikov, I.V., and Litasov, K.D. (2019) Origin of K-rich diamond-forming immiscible melts and CO2 fluid via partial melting of carbonated pelites at a depth of 180–200 km. Gondwana Research, 75(11), 154–171. 31. Shirey, S.B., Cartigny, P., Frost, D.J., Keshav, S., Nestola, F., Nimis, P., Pearson, D.G., Sobolev, N.V., and Walter, M.J. (2013) Diamonds and the geology of mantle carbon. Reviews in Mineralogy and Geochemistry, 75, 355–421. 32. Smith, E.M., Kopylova, M.G., Nowell, G.M., Pearson, D.G., and Ryder, J. (2012) Archean mantle fluids preserved in fibrous diamonds from Wawa, Superior craton. Geology, 40(12), 1071–1074. 33. Sokol, A.G., Kruk, A.N., Palyanov, Y.N., and Sobolev, N.V. (2017) Stability of phlogopite in ultrapotassic kimberlite-like systems at 5.5–7.5 GPa. Contributions to Mineralogy and Petrology, 172(4), 21. 34. Stagno, V., Stopponi, V., Kono, Y., Manning, C.E., and Irifune, T. (2018) Experimental determination of the viscosity of Na2CO3 melt between 1.7 and 4.6 GPa at 1200–1700 °C: Implications for the rheology of carbonatite magmas in the Earth’s upper mantle. Chemical Geology, 501, 19–25. 35. Thomsen, T.B., and Schmidt, M.W. (2008) Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth and Planetary Science Letters, 267(1), 17–31. 36. Tsuno, K., Dasgupta, R., Danielson, L., and Righter, K. (2012) Flux of carbonate melt from deeply subducted pelitic sediments: Geophysical and geochemical implications for the source of Central American volcanic arc. Geophysical Research Letters, 39(16), L16307. 37. Weiss, Y., Kessel, R., Griffin, W.L., Kiflawi, I., Klein-BenDavid, O., Bell, D.R., Harris, J.W., and Navon, O. (2009) A new model for the evolution of diamond-forming fluids: Evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos, 112(S2), 660–674. 38. Yaxley, G.M., and Brey, G.P. (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contributions to Mineralogy and Petrology, 146(5), 606–619. 39. Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S., Araujo, D., Griffin, W.L., and Kagi, H. (2009) Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos, 112(S2), 638–647. 40. Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S., Araujo, D., and Griffin, W.L. (2011) Fibrous diamonds from the placers of the northeastern Siberian Platform: Carbonate and silicate crystallization media. Russian Geology and Geophysics, 52(11), 1298–1309.