Инд. авторы: Malsagova K.A., Pleshakova T.O., Galiullin R.A., Kozlov A.F., Shumov I.D., Larionov D.I., Kapustina S.I., Ziborov V.S., Archakov A.I., Ivanov Y.D., Popov V.P., Tikhonenko F.V., Kupriyanov I.N., Petrov O.F., Gadzhieva O.A., Bashiryan B.A., Shimansky V.N.
Заглавие: Raman spectroscopy-based quality control of “sili-con-on-insulator” nanowire chips for the detection of brain cancer-associated microrna in plasma
Библ. ссылка: Malsagova K.A., Pleshakova T.O., Galiullin R.A., Kozlov A.F., Shumov I.D., Larionov D.I., Kapustina S.I., Ziborov V.S., Archakov A.I., Ivanov Y.D., Popov V.P., Tikhonenko F.V., Kupriyanov I.N., Petrov O.F., Gadzhieva O.A., Bashiryan B.A., Shimansky V.N. Raman spectroscopy-based quality control of “sili-con-on-insulator” nanowire chips for the detection of brain cancer-associated microrna in plasma // Sensors. - 2021. - Vol.21. - Iss. 4. - P.1-13. - ISSN 1424-8220. - EISSN 1424-3210.
Внешние системы: DOI: 10.3390/s21041333; РИНЦ: 46746326;
Реферат: eng: Application of micro-Raman spectroscopy for the monitoring of quality of nanowire sensor chips fabrication has been demonstrated. Nanowire chips have been fabricated on the basis of «silicon-on-insulator» (SOI) structures (SOI-NW chips). The fabrication of SOI-NW chips was performed by optical litography with gas-phase etching. The so-fabricated SOI-NW chips are in-tended for highly sensitive detection of brain cancer biomarkers in humans. In our present study, two series of experiments have been conducted. In the first experimental series, detection of a synthetic DNA oligonucleotide (oDNA) analogue of brain cancer-associated microRNA miR-NA-363 in purified buffer solution has been performed in order to demonstrate the high detection sensitivity. The second experimental series has been performed in order to reveal miRNA-363 itself in real human plasma samples. To provide detection biospecificity, the SOI-NW chip surface was modified by covalent immobilization of probe oligonucleotides (oDNA probes) complementary to the target biomolecules. Using the SOI-NW sensor chips proposed herein, the concentration detection limit of the target biomolecules at the level of 3.3 × 10−17 M has been demonstrated. Thus, the approach employing the SOI-NW chips proposed herein represents an attractive tool in biomedical practice, aimed at the early revelation of oncological diseases in humans.
Ключевые слова: diagnostics; micro RNA; Brain cancer; nanowire biosensor; silicon-on-insulator; Sensor chip; raman spectroscopy;
Издано: 2021
Физ. характеристика: с.1-13
Цитирование: 1. Das, N.; Dai, Y.; Liu, P.; Hu, C.; Tong, L.; Chen, X.; Smith, Z. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy. Sensors 2017, 17, 1592, doi:10.3390/s17071592. 2. Ramírez-Elías, M.G.; González, F.J. Raman Spectroscopy for In Vivo Medical Diagnosis. In Raman Spectroscopy; do Nascimento, G.M., Ed.; InTechOpen: London, UK: 2018, doi:10.5772/intechopen.72933. 3. Chao, J.; Cao, W.; Su, S.; Weng, L.; Song, S.; Fan, C.; Wang, L. Nanostructure-Based Surface-Enhanced Raman Scattering Biosensors for Nucleic Acids and Proteins. J. Mater. Chem. B 2016, 4, 1757–1769, doi:10.1039/C5TB02135A. 4. Žukovskaja, O.; Jahn, I.; Weber, K.; Cialla-May, D.; Popp, J. Detection of Pseudomonas Aeruginosa Metabolite Pyocyanin in Water and Saliva by Employing the SERS Technique. Sensors 2017, 17, 1704, doi:10.3390/s17081704. 5. Guo, J.; Zeng, F.; Guo, J.; Ma, X. Preparation and Application of Microfluidic SERS Substrate: Challenges and Future Perspectives. J. Mater. Sci. Technol. 2020, 37, 96–103, doi:10.1016/j.jmst.2019.06.018. 6. Rissin, D.M.; Kan, C.W.; Campbell, T.G.; Howes, S.C.; Fournier, D.R.; Song, L.; Piech, T.; Patel, P.P.; Chang, L.; Rivnak, A.J.; et al. Single-Molecule Enzyme-Linked Immunosorbent Assay Detects Serum Proteins at Subfemtomolar Concentrations. Nat. Biotechnol. 2010, 28, 595–599, doi:10.1038/nbt.1641. 7. Pérez-Jiménez, A.I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B. Surface-Enhanced Raman Spectroscopy: Benefits, Trade-Offs and Future Developments. Chem. Sci. 2020, 11, 4563–4577, doi:10.1039/D0SC00809E. 8. McKinney, P.A. Brain Tumours: Incidence, Survival, and Aetiology. J. Neurol. Neurosurg. Psychiatry 2004, 75 (Suppl. 2), ii12–ii17, doi:10.1136/jnnp.2004.040741. 9. Cure Brain Cancer Foundation. Available online: https://www.curebraincancer.org.au/page/8/facts-stats (accessed on 15 January 2021). 10. Zachariah, M.A.; Oliveira-Costa, J.P.; Carter, B.S.; Stott, S.L.; Nahed, B.V. Blood-Based Biomarkers for the Diagnosis and Monitoring of Gliomas. Neuro-Oncol. 2018, 20, 1155–1161, doi:10.1093/neuonc/noy074. 11. Adachi-Hayama, M.; Adachi, A.; Shinozaki, N.; Matsutani, T.; Hiwasa, T.; Takiguchi, M.; Saeki, N.; Iwadate, Y. Circulating Anti-Filamin C Autoantibody as a Potential Serum Biomarker for Low-Grade Gliomas. BMC Cancer 2014, 14, 452, doi:10.1186/1471-2407-14-452. 12. Lisitsa, A.V.; Ponomarenko, E.A.; Lokhov, P.G.; Archakov, A.I. Postgenomic Medicine: Alternative to Biomarkers. Ann. RAMS 2016, 71, doi:10.15690/vramn647. 13. Beermann, J.; Piccoli, M.-T.; Viereck, J.; Thum, T. Non-Coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol. Rev. 2016, 96, 1297–1325, doi:10.1152/physrev.00041.2015. 14. Møller, H.G.; Rasmussen, A.P.; Andersen, H.H.; Johnsen, K.B.; Henriksen, M.; Duroux, M. A Systematic Review of MicroRNA in Glioblastoma Multiforme: Micro-Modulators in the Mesenchymal Mode of Migration and Invasion. Mol. Neurobiol. 2013, 47, 131–144, doi:10.1007/s12035-012-8349-7. 15. Mohyeldin, A.; Chiocca, E.A. Gene and Viral Therapy for Glioblastoma: A Review of Clinical Trials and Future Directions. Cancer J. 2012, 18, 82–88, doi:10.1097/PPO.0b013e3182458b13. 16. Lee, S.-J.; Kim, S.-J.; Seo, H.-H.; Shin, S.-P.; Kim, D.; Park, C.-S.; Kim, K.-T.; Kim, Y.-H.; Jeong, J.-S.; Kim, I.-H. Over-Expression of MiR-145 Enhances the Effectiveness of HSVtk Gene Therapy for Malignant Glioma. Cancer Lett. 2012, 320, 72–80, doi:10.1016/j.canlet.2012.01.029. 17. Backes, C.; Meese, E.; Keller, A. Specific MiRNA Disease Biomarkers in Blood, Serum and Plasma: Challenges and Prospects. Mol. Diagn. Ther. 2016, 20, 509–518, doi:10.1007/s40291-016-0221-4. 18. Wittmann, J.; Jäck, H.-M. Serum MicroRNAs as Powerful Cancer Biomarkers. Biochim. Biophys. Acta (BBA) Rev. Cancer 2010, 1806, 200–207, doi:10.1016/j.bbcan.2010.07.002. 19. Volinia, S.; Galasso, M.; Sana, M.E.; Wise, T.F.; Palatini, J.; Huebner, K.; Croce, C.M. Breast Cancer Signatures for Invasiveness and Prognosis Defined by Deep Sequencing of MicroRNA. Proc. Natl. Acad. Sci. USA 2012, 109, 3024–3029, doi:10.1073/pnas.1200010109. 20. Chistiakov, D.A.; Chekhonin, V.P. Contribution of MicroRNAs to Radio-and Chemoresistance of Brain Tumors and Their Therapeutic Potential. Eur. J. Pharmacol. 2012, 684, 8–18, doi:10.1016/j.ejphar.2012.03.031. 21. Godlewski, J.; Newton, H.B.; Chiocca, E.A.; Lawler, S.E. MicroRNAs and Glioblastoma; the Stem Cell Connection. Cell Death Differ. 2010, 17, 221–228, doi:10.1038/cdd.2009.71. 22. Pang, J.C.; Kwok, W.K.; Chen, Z.; Ng, H.-K. Oncogenic Role of MicroRNAs in Brain Tumors. Acta Neuropathol. 2009, 117, 599–611, doi:10.1007/s00401-009-0525-0. 23. Silber, J.; James, C.D.; Hodgson, J.G. MicroRNAs in Gliomas: Small Regulators of a Big Problem. Neuromol. Med. 2009, 11, 208–222, doi:10.1007/s12017-009-8087-9. 24. Westphal, M.; Lamszus, K. The Neurobiology of Gliomas: From Cell Biology to the Development of Therapeutic Approaches. Nat. Rev. Neurosci. 2011, 12, 495–508, doi:10.1038/nrn3060. 25. Banelli, B.; Forlani, A.; Allemanni, G.; Morabito, A.; Pistillo, M.P.; Romani, M. MicroRNA in Glioblastoma: An Overview. Int. J. Genom. 2017, 2017, 1–16, doi:10.1155/2017/7639084. 26. Conti, A.; Romeo, S.G.; Cama, A.; La Torre, D.; Barresi, V.; Pezzino, G.; Tomasello, C.; Cardali, S.; Angileri, F.F.; Polito, F.; et al. MiRNA Expression Profiling in Human Gliomas: Upregulated MiR-363 Increases Cell Survival and Proliferation. Tumor Biol. 2016, 37, 14035–14048, doi:10.1007/s13277-016-5273-x. 27. Koshiol, J.; Wang, E.; Zhao, Y.; Marincola, F.; Landi, M.T. Strengths and Limitations of Laboratory Procedures for MicroRNA Detection: Table 1. Cancer Epidemiol. Biomark. Prev. 2010, 19, 907–911, doi:10.1158/1055-9965.EPI-10-0071. 28. Chen, C. Real-Time Quantification of MicroRNAs by Stem-Loop RT-PCR. Nucleic Acids Res. 2005, 33, e179–e179, doi:10.1093/nar/gni178. 29. Metzker, M.L. Sequencing Technologies—The next Generation. Nat. Rev. Genet. 2010, 11, 31–46, doi:10.1038/nrg2626. 30. Garber, M.; Grabherr, M.G.; Guttman, M.; Trapnell, C. Computational Methods for Transcriptome Annotation and Quantification Using RNA-Seq. Nat. Methods 2011, 8, 469–477, doi:10.1038/nmeth.1613. 31. Pritchard, C.C.; Cheng, H.H.; Tewari, M. MicroRNA Profiling: Approaches and Considerations. Nat Rev Genet 2012, 13, 358–369, doi:10.1038/nrg3198. 32. Malsagova, K.A.; Pleshakova, T.O.; Galiullin, R.A.; Shumov, I.D.; Kozlov, A.F.; Romanova, T.S.; Popov, V.P.; Glukhov, A.V.; Konev, V.A.; Archakov, A.I.; et al. Nanowire Aptamer-Sensitized Biosensor Chips with Gas Plasma-Treated Surface for the Detection of Hepatitis C Virus Core Antigen. Coatings 2020, 10, 753, doi:10.3390/coatings10080753. 33. Malsagova, K.A.; Pleshakova, T.O.; Popov, V.P.; Kupriyanov, I.N.; Galiullin, R.A.; Kozlov, A.F.; Shumov, I.D.; Kaysheva, A.L.; Tikhonenko, F.V.; Archakov, A.I.; Ivanov, Y.D. Optical Monitoring of the Production Quality of Si-Nanoribbon Chips Intended for the Detection of ASD-Associated Oligonucleotides. Micromachines 2021, 12, 147. https://doi.org/10.3390/mi12020147. 34. Yang, F.; Zhang, G.-J. Silicon Nanowire-Transistor Biosensor for Study of Molecule-Molecule Interactions. Rev. Anal. Chem. 2014, 33, doi:10.1515/revac-2014-0010. 35. Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C.M. Electrical Detection of Single Viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017–14022, doi:10.1073/pnas.0406159101. 36. Naumova, O.V.; Fomin, B.I.; Nasimov, D.A.; Dudchenko, N.V.; Devyatova, S.F.; Zhanaev, E.D.; Popov, V.P.; Latyshev, A.V.; Aseev, A.L.; Ivanov, Y.D.; et al. SOI Nanowires as Sensors for Charge Detection. Semicond. Sci. Technol. 2010, 25, 055004, doi:10.1088/0268-1242/25/5/055004. 37. Popov, V.P.; Antonova, A.I.; Frantsuzov, A.A.; Safronov, L.N.; Feofanov, G.N.; Naumova, O.V.; Kilanov, D.V. Properties of Silicon-on-Insulator Structures and Devices. Semiconductors 2001, 35, 1030–1037, doi:10.1134/1.1403567. 38. Gao, X.P.A.; Zheng, G.; Lieber, C.M. Subthreshold Regime Has the Optimal Sensitivity for Nanowire FET Biosensors. Nano Lett. 2010, 10, 547–552, doi:10.1021/nl9034219. 39. Wang, H.; Han, X.; Ou, X.; Lee, C.-S.; Zhang, X.; Lee, S.-T. Silicon Nanowire Based Single-Molecule SERS Sensor. Nanoscale 2013, 5, 8172, doi:10.1039/c3nr01879b. 40. Hahm, J.; Lieber, C.M. Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors. Nano Lett. 2004, 4, 51–54, doi:10.1021/nl034853b. 41. Malsagova, K.A.; Pleshakova, T.O.; Galiullin, R.A.; Kozlov, A.F.; Romanova, T.S.; Shumov, I.D.; Popov, V.P.; Tikhonenko, F.V.; Glukhov, A.V.; Smirnov, A.Y.; et al. SOI-Nanowire Biosensor for the Detection of Glioma-Associated MiRNAs in Plasma. Chemosensors 2020, 8, 95, doi:10.3390/chemosensors8040095. 42. Ivanov, Y.D.; Pleshakova, T.O.; Malsagova, K.A.; Kozlov, A.F.; Kaysheva, A.L.; Shumov, I.D.; Galiullin, R.A.; Kurbatov, L.K.; Popov, V.P.; Naumova, O.V.; Fomin, B.I.; et al. Detection of Marker MiRNAs in Plasma Using SOI-NW Biosensor. Sens. Actuators B Chem. 2018, 261, 566–571, doi:10.1016/j.snb.2018.01.153. 43. Ivanov, Y.D.; Pleshakova, T.O.; Kozlov, A.F.; Malsagova, K.A.; Krohin, N.V.; Shumyantseva, V.V.; Shumov, I.D.; Popov, V.P.; Naumova, O.V.; Fomin, B.I.; et al. SOI Nanowire for the High-Sensitive Detection of HBsAg and α-Fetoprotein. Lab Chip Miniat. Chem. Biol. 2012, 12, 5104–5111, doi:10.1039/c2lc40555e. 44. Malsagova, K.A.; Ivanov, Y.D.; Pleshakova, T.O.; Kaysheva, A.L.; Shumov, I.D.; Kozlov, A.F.; Archakov, A.I.; Popov, V.P.; Fomin, B.I.; Latyshev, A.V. A SOI-Nanowire Biosensor for the Multiple Detection of D-NFATc1 Protein in the Serum. Anal. Methods 2015, 7, 8078–8085, doi:10.1039/c5ay01866h. 45. Laborde, C.; Pittino, F.; Verhoeven, H.A.; Lemay, S.G.; Selmi, L.; Jongsma, M.A.; Widdershoven, F.P. Real-Time Imaging of Microparticles and Living Cells with CMOS Nanocapacitor Arrays. Nat. Nanotechnol. 2015, 10, 791–795, doi:10.1038/nnano.2015.163. 46. Naumova, O.V.; Fomin, B.; Popov, V.P.; Strelchuk, V.; Nikolenko, A.; Nazarov, A.N. An Experimental Study of Properties of Ultrathin Si Layer with Bonded Si/SiO2 Interface. Adv. Mater. Res. 2013, 854, 3–10, doi:10.4028/www.scientific.net/AMR.854.3. 47. Yasui, T.; Yanagida, T.; Ito, S.; Konakade, Y.; Takeshita, D.; Naganawa, T.; Nagashima, K.; Shimada, T.; Kaji, N.; Nakamura, Y.; et al. Unveiling Massive Numbers of Cancer-Related Urinary-MicroRNA Candidates via Nanowires. Sci. Adv. 2017, 3, e1701133, doi:10.1126/sciadv.1701133. 48. Fan, Y.; Chen, X.; Trigg, A.D.; Tung, C.; Kong, J.; Gao, Z. Detection of MicroRNAs Using Target-Guided Formation of Conducting Polymer Nanowires in Nanogaps. J. Am. Chem. Soc. 2007, 129, 5437–5443, doi:10.1021/ja067477g. 49. Malsagova, K.A.; Pleshakova, T.O.; Galiullin, R.A.; Kaysheva, A.L.; Shumov, I.D.; Ilnitskii, M.A.; Popov, V.P.; Glukhov, A.V.; Archakov, A.I.; Ivanov, Y.D. Ultrasensitive Nanowire-Based Detection of HCVcoreAg in the Serum Using a Microwave Generator. Anal. Methods 2018, doi:10.1039/C8AY00495A. 50. Ivanov, Y.; Pleshakova, T.; Malsagova, K.; Kurbatov, L.; Popov, V.; Glukhov, A.; Smirnov, A.; Enikeev, D.; Potoldykova, N.; Alekseev, B.; et al. Detection of Marker MiRNAs, Associated with Prostate Cancer, in Plasma Using SOI-NW Biosensor in Direct and Inversion Modes. Sensors 2019, 19, 5248, doi:10.3390/s19235248.