Инд. авторы: Kokh S.N., Sokol E.V., Gustaytis M.A.
Заглавие: Mercury anomaly in oligocene–miocene maykop group sediments (caucasus continental collision zone): mercury hosts, distribution, and sources
Библ. ссылка: Kokh S.N., Sokol E.V., Gustaytis M.A. Mercury anomaly in oligocene–miocene maykop group sediments (caucasus continental collision zone): mercury hosts, distribution, and sources // Minerals. - 2021. - Vol.11. - Iss. 7. - EISSN 2075-163X.
Внешние системы: DOI: 10.3390/min11070751; РИНЦ: 46877369;
Реферат: eng: The Oligocene–Miocene Maykop Group sediments, mainly composed of illite–smectite, store mercury in strongly variable concentrations from 10 to 920 μg/kg. Extremely high Hg levels (98–920 μg/kg) coupled with abnormal mercury-to-total organic carbon (TOC) ratios (Hg/TOC = 109 to 3000 μg/kg/wt%; TOC = 0.2 wt% to 1.2 wt%) were measured in the Middle Maykop marine shales that were deposited in the deepwater Indol–Kuban Basin under anoxic conditions. The Middle May-kop shales contain up to 70% of total mercury in sulfide form. In heavy mineral fractions, abundant Hg-bearing pyrite (with up to 4810 μg/kg Hg in hand-picked concentrates) is accompanied by spo-radic cinnabar. Relative to the Middle Maykop sediments, the Upper Maykop shales have much lower Hg concentrations and Hg/TOC ratios: 10 to 63 μg/kg (34 μg/kg on average) and 7.7 to 137 μg/kg/wt% (39 μg/kg/wt% on average), respectively. Mercury sequestration is inferred to occur mostly by binding in sulfide hosts in the Middle Maykop anoxic deep-sea sediments and in organic matter, Fe3+-(oxy)hydroxides, and clay particles in the Upper Maykop shales which were deposited in a more oxygenated environment. Mercury inputs to the marine shales during Maykopian sedi-mentation were possibly associated with local Oligocene–Lower Miocene volcanic activity in the Caucasus Continental Collision Zone. At the same time, the mode of Hg binding in sediments was controlled by redox conditions which changed from anoxic to disoxic and suboxic at the Middle-to-Upper Maykop transition.
Ключевые слова: Total mercury; Sulfidic mercury; pyrite; organic matter; mud volcano; Maykop Group sediments; magmatic activity; cinnabar; caucasus;
Издано: 2021
Цитирование: 1. Sanei, H.; Grasby, S.E.; Beauchamp, B. Latest Permian mercury anomalies. Geology 2012, 40, 63–66. 2. Grasby, S.E.; Shen, W.; Yin, R.; Gleason, J.D.; Blum, J.D.; Lepak, R.F.; Hurley, J.P.; Beauchamp, B. Isotopic signatures of mercury contamination in latest Permian oceans. Geology 2017, 45, 55–58. 3. Grasby, S.E.; Them, T.R., II; Chen, Z.; Yin, R.; Ardakani, O.H. Mercury as a proxy for volcanic emissions in the geologic record. Earth-Sci. Rev. 2019, 196, 102880. 4. Percival, L.M.E.; Jenkyns, H.C.; Mather, T.A.; Dickson, A.J.; Batenburg, S.J.; Ruhl, M.; Hesselbo, S.P.; Barclay, R.; Jarvis, I.; Rob-inson, S.A.; et al. Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events. Am. J. Sci. 2018, 318, 799–860. 5. Grasby, S.E.; Beauchamp, B.; Embry, A.F.; Sanei, H. Recurrent early Triassic ocean anoxia. Geology 2013, 41, 175–178. 6. Grasby, S.E.; Sanei, H.; Beauchamp, B.; Chen, Z. Mercury deposition through the Permo-Triassic Biotic Crisis. Chem. Geol. 2013, 351, 209–216. 7. Sial, A.N.; Lacerda, L.D.; Ferreira, V.P.; Frei, R.; Marquillas, R.A.; Barbosa, J.A.; Gaucher, C.; Windmöller, C.C.; Pereira, N.S. Mercury as a proxy for volcanic activity during extreme environmental turnover: The Cretaceous–Paleogene transition. Palaeo-geogr. Palaeoclimatol. Palaeoecol. 2013, 387, 153–164. 8. Sial, A.N.; Chen, J.; Lacerda, L.D.; Frei, R.; Tewari, V.C.; Pandit, M.K.; Gaucher, C.; Ferreira, V.P.; Cirilli, S.; Peralta, S.; et al. Mercury enrichment and Hg isotopes in Cretaceous–Paleogene boundary successions: Links to volcanism and palaeoenviron-mental impacts. Cretac. Res. 2016, 66, 60–81. 9. Thibodeau, A.M.; Ritterbush, K.; Yager, J.A.; West, A.J.; Ibarra, Y.; Bottjer, D.J.; Berelson, W.M.; Bergquist, B.A.; Corsetti, F.A. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nat. Commun. 2016, 7, 11147. 10. Yin, R.; Xu, L.; Lehmann, B.; Lepak, R.F.; Hurley, J.P.; Mao, J.; Feng, X.; Hu, R. Anomalous mercury enrichment in early Cam-brian black shales of South China: Mercury isotopes indicate a seawater source. Chem. Geol. 2017, 467, 159–167. 11. Popov, S.V.; Rögl, F.; Rozanov, A.Y.; Steininger, F.F.; Shcherba, I.G.; Kováč, M. Lithological-Paleogeographic Maps of Paratethys; 10 Maps Late Eocene to Pliocene; Scale: 1:5,000,000; Courier Forschungsinstitut Senckenberg: Stuttgart, Germany, 2004. 12. Popov, S.V.; Antipov, M.P.; Zastrozhnov, A.S.; Kurina, E.E.; Pinchuk, T.N. Sea-level fluctuations on the northern shelf of the Eastern Paratethys in the Oligocene-Neogene. Stratigr. Geol. Correl. 2010, 18, 200–224. 13. Robinson, A.G.; Rudat, J.H.; Banks, C.J.; Wiles, R.L.F. Petroleum geology of the Black Sea. Mar. Pet. Geol. 1996, 13, 195–223. 14. Inan, S.; Yalcin, M.N.; Guliev, I.S.; Kuliev, K.; Feizullayev, A.A. Deep petroleum occurrences in the lower Kura depression, south Caspian Basin, Azerbaijan: An organic geochemical and basin modelling study. Mar. Pet. Geol. 1997, 14, 731–762. 15. Shnyukov, E.; Sheremetiev, V.; Maslakov, N.; Kutniy, V.; Gusakov, I.; Trofimov, V. Mud Volcanoes of the Kerch-Taman Region; GlavMedia Publishing House: Krasnodar, Russia, 2005; pp. 1–176. (In Russian) 16. Smith-Rouch, J.S., Oligocene–Miocene Maykop/diatom total petroleum system of the South Caspian Basin Province, Azerbaijan, Iran, and Turkmenistan. Bull. U.S. Geol. Surv. 2006, 2201-I, 1–27. 17. Alizadeh, A.A. Geology of Azerbaijan, Oil and Gas; v. VII; Nafta-Press: Baku, Azerbaijan, 2008; pp. 1–672, (In Russian). 18. Sachsenhofer, R.F.; Popov, S.V.; Akhmetiev, M.A.; Bechtel, A.; Gratzer, R.; Groß, D.; Horsfield, B.; Rachetti, A.; Rupprecht, B.; Schaffar, W.B.H.; et al. The type section of the Maikop Group (Oligocene–lower Miocene) at the Belaya River (North Caucasus): Depositional environment and hydrocarbon potential. AAPG Bull. 2017, 101, 289–319. 19. Sachsenhofer, R.F.; Popov, S.V.; Bechtel, A.; Coric, S.; Francu, J.; Gratzer, R.; Grunert, P.; Kotarba, M.; Mayer, J.; Pupp, M.; et al. Oligocene and Lower Miocene source rocks in the Paratethys: Palaeogeographical and stratigraphic controls. Geol. Soc. Lond. Spec. Publ. 2017, 464, 267–306. 20. Kopf, A.; Deyhle, A.; Lavrushin, V.Y.; Polyak, B.G.; Gieskes, J.M.; Buachidze, G.I.; Wallmann, K.; Eisenhauer, A. Isotopic evidence (He, B, C) for deep fluid and mud mobilization from mud volcanoes in the Caucasus continental collision zone. Int. J. Earth Sci. (Geol. Rundsch) 2003, 92, 407–425. 21. Lavrushin, V.Y.; Kopf, A.; Deyhle, A.; Stepanets, M.I. Formation of mud-volcanic fluids in Taman (Russia) and Kakhetia (Geor-gia): Evidence from boron isotopes. Lithol. Miner. Resour. 2003, 38, 120–153. 22. Lavrushin, V.Y.; Kikvadze, O.E.; Pokrovsky, B.G.; Polyak, B.G.; Guliev, I.S.; Aliev, A.A. Waters from mud volcanoes of Azer-baijan: Isotopic-geochemical properties and generation environments. Lithol. Miner. Resour. 2015, 50, 1–25. 23. Sokol, E.; Kokh, S.; Kozmenko, O.; Novikova, S.; Khvorov, P.; Nigmatulina, E.; Belogub, E.; Kirillov, M. Mineralogy and geochemistry of mud volcanic ejecta: A new look at old issues (a case study from the Bulganak field, Northern Black Sea). Minerals 2018, 8, 344. 24. Sokol, E.V.; Kokh, S.N.; Kozmenko, O.A.; Lavrushin, V.Y.; Belogub, E.V.; Khvorov, P.V.; Kikvadze, O.E. Boron in an onshore mud volcanic environment: Case study from the Kerch Peninsula, the Caucasus continental collision zone. Chem. Geol. 2019, 525, 58–81. 25. Kikvadze, O.E.; Lavrushin, V.Yu.; Polyak, B.G. Chemical geothermometry: Application to mud volcanic waters of the Caucasus region. Front. Earth Sci. 2020, 14, 738–757. 26. Kokh, S.N.; Sokol, E.V.; Gustaytis, M.A.; Sokol, I.A.; Deviatiiarova, A.S. Onshore mud volcanoes as a geological source of mer-cury: Case study from the Kerch Peninsula, Caucasus continental collision zone. Sci. Total Environ. 2021, 751, 141806. 27. Kopf, A. Significance of mud volcanism. Rev. Geophys. 2002, 40, 1–52. 28. Kokh, S.N.; Sokol, E.V.; Dekterev, A.A.; Kokh, K.A.; Rashidov, T.M.; Tomilenko, A.A.; Bul’bak, T.A.; Khasaeva, A.; Guseinov, A. The 2011 Strong Fire Eruption of Shikhzarli Mud Volcano, Azerbaijan: A Case Study with Implications for Methane Flux Estimation. Environ. Earth Sci. 2017, 76, 701. 29. Kokh, S.N.; Shnyukov, Y.F.; Sokol, E.V.; Novikova, S.A.; Kozmenko, O.A.; Semenova, D.V.; Rybak, E.N. Heavy carbon traver-tine related to methane generation: A case study of the Big Tarkhan cold spring, Kerch Peninsula, Crimea. Sediment. Geol. 2015, 325, 26–40. 30. Olenchenko, V.V.; Shnyukov, Y.F.; Gas’kova, O.L.; Kokh, S.N.; Sokol, E.V.; Bortnikova, S.B.; El’tsov, I.N. Explosion Dynamics of the Andrusov Mud Vent (Bulganak Mud Volcano Area, Kerch Peninsula, Russia). Dokl. Earth Sci. 2015, 464, 951–955. 31. Mazzini, A.; Etiope, G. Mud volcanism: An updated review. Earth Sci. Rev. 2017, 168, 81–112. 32. Lavrushin, V.Yu.; Dubinina, E.O.; Avdeenko, A.S. Isotopic composition of oxygen and hydrogen in mud-volcanic waters from Taman (Russia) and Kakhetia (Eastern Georgia). Lithol. Miner. Resour. 2005, 40, 123–137. 33. Herbin, J.P.; Saint-Germès, M.; Maslakov, N.; Shnyukov, E.F.; Vially, R. Oil seeps from the “Boulganack” mud volcano in the Kerch Peninsula (Ukraine-Crimea), study of the mud and the gas: Inferences for the petroleum potential. Oil Gas Sci. Technol. 2008, 63, 609–628. 34. Kikvadze, O.E.; Lavrushin, V.Y.; Pokrovskii, B.G.; Polyak, B.G. Isotope and chemical composition of gases from mud volcanoes in the Taman Peninsula and problem of their genesis. Lithol. Miner. Resour. 2014, 49, 491–504. 35. Brosset, C. The behavior of mercury in the physical environment. Water Air Soil Pollut. 1987, 34, 145–166. 36. Shuvaeva, O.V.; Gustaytis, M.A.; Anoshin, G.N. Mercury speciation in environmental solid samples using thermal release technique with atomic absorption detection. Anal. Chim. Acta 2008, 621, 148–154. 37. Shatsky, V.; Sitnikova, E.; Kozmenko, O.; Palessky, S.; Nikolaeva, I.; Zayachkovsky, A. Behavior of incompatible elements during ultrahigh-pressure metamorphism (by the example of rocks of the Kokchetav massif). Russ. Geol. Geophys. 2006, 47, 482–496. 38. Jeffery, G.H.; Bassett, J.; Mendham, J.; Denney, R.C. Vogel’s Textbook of Quantitative Chemical Analysis, 5th ed.; Longman Scientific & Technical: Harlow, Essex, UK, 1989; pp. 1–877. 39. ISO. ISO 33320. In Particle Size Analysis—Laser Diffraction Methods; ISO Standards Authority: Geneva, Switzerland, 2009. 40. Cossa, D.; Coquery, M.; Gobeil, C.; Martin, J.-M. Mercury Fluxes at the Ocean Margins. In Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances; Baeyens, W., Ebinghaus, R., Vasiliev, O., Eds.; Springer Netherlands: Berlin/Heidelberg, Ger-many, 1996; Volume 2, pp. 229–247. 41. Lamborg, C.H.; Von Damm, K.L.; Fitzgerald, W.F.; Hammerschmidt, C.R.; Zierenberg, R. Mercury and monomethylmercury in fluids from Sea Cliff submarine hydrothermal field, Gorda Ridge. Geophys. Res. Lett. 2006, 33, L17606. 42. Fitzgerald, W.F.; Lamborg, C.H.; Hammerschmidt, C.R. Marine biogeochemical cycling of mercury. Chem. Rev. 2007, 107, 641– 662. 43. Fitzgerald, W.F.; Lamborg, C.H. Geochemistry of mercury in the environment. In Treatise on Geochemistry, 2nd ed; Holland, H., Turekian, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 11, pp. 91–129. 44. Gworek, B.; Bemowska-Kałabun, O.; Kijeńska, M.; Wrzosek-Jakubowska, J. Mercury in marine and oceanic waters—A review. Water Air Soil Pollut. 2016, 227, 371. 45. Kongchum, M.; Hudnall, W.H.; Delaune, R.D. Relationship between sediment clay minerals and total mercury. J. Environ. Sci. Health A 2011, 46, 534–539. 46. Nedumov, R.I. Lithology, geochemistry, and paleogeography of Cenozoic deposits in the Caucasus foothills. Litol. Polezn. Iskop. 1994, 1, 69–77. (In Russian) 47. Nikolsky, I.L.; Korchemagin, V.A.; Emets, V.S.; Cledich, O. The tectonic framework of the Nikitovka mercury field. In Conditions in the Areas of Sb-Hg and Fluorite Mineralization; Nauka: Novosibirsk, Russia, 1991; pp. 30–37. (In Russian) 48. Manucharyants, B.O.; Naumov, V.K.; Khodakovskiy, I.L. Physocochemical conditions of formation of antimony and mercury hydrothermal deposits. Geokhimiya 1971, 11, 1291–1301. 49. Belous, I.R.; Kirikilitsa, S.I.; Levenshtein, M.L.; Utekhin, T.M. The age of hydrothermal mineralization in the Donetsk Coal Basin. Doklady AN SSSR. 1970, 192, 305–310. (In Russian) 50. Shumlansky, V.A. The Cimmerian Metallogenic Event in the Ukraine Territory; Naukova Dumka: Kiev, Ukraine, 1983; pp. 1–220. (In Russian) 51. Panov, B.S. The Nikitovka mercury field in the Donetsk Basin: A geological-genetic model. In Genetic Models of Magmatic Mineral Deposits; Nauka: Novosibirsk, Russia, 1985; pp. 121–123. (In Russian) 52. Suyarko, V.G.; Clitchenko, M.A. The age of the Nikitovka mercury field. In Conditions in the Areas of Sb-Hg and Fluorite Mineral-ization; Nauka: Novosibirsk, Russia, 1991; pp. 72–74. (In Russian) 53. Ferrara, R.; Mazzolai, B.; Lanzillotta, E.; Nucaro, E.; Pirrone, N. Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin. Sci. Total Environ. 2000, 259, 115–121. 54. Nriagu, J.; Becker, Ch. Volcanic emissions of mercury to the atmosphere: Global and regional inventories. Sci. Total Environ. 2003, 304, 3–12. 55. Pyle, D.M.; Mather, T.A. The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos. Environ. 2003, 3, 5115–5124. 56. Witt, M.L.I.; Fischer, T.P.; Pyle, D.M.; Yang, T.F.; Zellmer, G.F. Fumarole compositions and mercury emissions from the Tatun volcanic field, Taiwan: Results from multi-component gas analyser, portable mercury spectrometer and direct sampling tech-niques. J. Volcanol. Geotherm. Res. 2008, 178, 636–643. 57. Mason, R.P. Mercury emissions from natural processes and their importance in the global mercury cycle: Chapter 7. In Mercury Fate and Transport in the Global Atmosphere; Springer: New York, NY, USA, 2009; pp. 173–191. 58. Bagnato, E.; Aiuppa, A.; Parello, F.; Calabrese, S.; D’Alessandro, W.; Mather, T.A.; McGonigle, A.J.S.; Pyle, D.M.; Wängberg, I. Degassing of gaseous (elemental and reactive) and particulate mercury from Mount Etna volcano (Southern Italy). Atmos. En-viron. 2007, 41, 7377–7388. 59. Bagnato, E.; Barra, M.; Cardellini, C.; Chiodini, G.; Parello, F.; Sprovieri, M. First combined flux chamber survey of mercury and CO2 emissions from soil diffuse degassing at Solfatara of Pozzuoli crater, Campi Flegrei (Italy): Mapping and quantification of gas release. J. Volcanol. Geotherm. Res. 2014, 289, 26–40. 60. Adamia, S.A.; Zakariadze, G.; Chkhotua, T.; Sadradze, N.; Tsereteli, N.; Chabukiani, A.; Gventsadze, A. Geology of the Cauca-sus: A review. Turk. J. Earth Sci. 2011, 20, 489–544. 61. Azizbekov, SH. Geology of the USSR. Azerbaijanian SSR; v. XLVII; Nedra: Moscow, Russia, 1972; pp. 1–520. (In Russian) 62. Milanovsky, E.E.; Koronovsky, N.V. Orogenic Volcanism and Tectonics of the Alpine Belt in Eusrasia; Nedra: Moscow, Russia, 1973; pp. 1–280. (In Russian) 63. Saintot, A.; Brunet, M.-F.; Yakovlev, F.; Sebrier, M.; Stephenson, R.; Ershov, A.; Chalot-Prat, F.; McCann, T. The Mesozoic– Cenozoic tectonic evolution of the Greater Caucasus. In European Lithosphere Dynamics; Gee, D., Stephenson, R.A., Eds.; Geological Society: London, UK, 2006; Volume 32, pp. 277–289. 64. Vincent, S.; Allen, M.; Ismail-Zadeh, A.; Flecker, R.; Foland, K.; Simmons, M. Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region. Geol. Soc. Am. Bull. 2005, 117, 1513–1533. 65. Adamia, S.A.; Mumladze, T.; Sadradze, N.; Tsereteli, E.; Tsereteli, N.; Varazanashvili, O. Late Cenozoic tectonics and geody-namics of Georgia (SW Caucasus). Georgian Int. J. Sci. Technol. 2008, 1, 77–107. 66. Lebedev, V.A.; Volkov, V.N.; Chernyshev, I.V.; Sagatelyan, A.K. Spatial migration of magmatic activity within the Caucasian segment of the Alpine belt in the Early Neogene under the conditions of geotectonic setting change: Isotope-geochronological data. Dokl. Earth Sci. 2013, 448, 225–231. 67. Mason, R.P.; Choi, A.L.; Fitzgerald, W.F.; Hammerschmidt, C.R.; Lamborg, C.H.; Soerensen, A.L.; Sunderland, E.M. Mercury biogeochemical cycling in the ocean and policy implications. Environ. Res. 2012, 119, 101–117. 68. Gagnon, Ch.; Pelletier, É.; Mucci, A. Behaviour of anthropogenic mercury in coastal marine sediments. Mar. Chem. 1997, 59, 159–176. 69. Outridge, P.M.; Sanei, H.; Stern, G.A.; Hamilton, P.B.; Goodarzi, F. Evidence for control of mercury accumulation in sediments by variations of aquatic primary productivity in Canadian High Arctic lakes. Environ. Sci. Technol. 2007, 41, 5259–5265. 70. Amos, H.M.; Jacob, D.J.; Kocman, D.; Horowitz, H.M.; Zhang, Y.; Dutkiewicz, S.; Horvat, M.; Corbitt, E.S.; Krabbenhoft, D.P.; Sunderland, E.M. Global biogeochemical implications of mercury discharges from rivers and sediment burial. Environ. Sci. Technol. 2014, 48, 9514–9522. 71. Sanei, H.; Outridge, P.M.; Stern, G.A.; MacDonald, R.W. Classification of mercury-labile organic matter relationships in lake sediments. Chem. Geol. 2014, 373, 87–92. 72. Percival, L.M.E.; Witt, M.L.I.; Mather, T.A.; Hermoso, M.; Jenkyns, H.C.; Hesselbo, S.P.; Al-Suwaidi, A.H.; Storm, M.S.; Xu, W.; Ruhl, M. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Ka-roo–Ferrar large Igneous Province. Earth Planet. Sci. Lett. 2015, 428, 267–280. 73. Jones, M.T.; Percival, L.M.E.; Stokke, E.W.; Frieling, J.; Mather, T.A.; Riber, L.; Schubert, B.A.; Schultz, B.; Tegner, C.; Planke, S.; et al. Mercury anomalies across the Palaeocene–Eocene Thermal Maximum. Clim. Past. 2019, 15, 217–236. 74. Paschall, O.; Carmichael, S.K.; Königshof, P.; Waters, J.A.; Ta, P.H.; Komatsu, T.; Dombrowski, A. The Devonian-Carboniferous boundary in Vietnam: Sustained ocean anoxia with a volcanic trigger for the Hangenberg Crisis? Glob. Planet. Chang. 2019, 175, 64–81. 75. Rudnick, R.L.; Gao, S. The Composition of the Continental Crust Treatise on Geochemistry—The Crust; Rudnick, R.L., Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2003; pp. 1–64. 76. Them, T.R.; Jagoe, C.H.; Caruthers, A.H.; Gill, B.C.; Grasby, S.E.; Gröcke, D.R.; Yin, R.; Owens, J.D. Terrestrial sources as the primary delivery mechanism of mercury to the oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic). Earth Planet. Sci. Lett. 2019, 507, 62–72. 77. Shen, J.; Algeo, T.J.; Chen, J.; Planavsky, N.J.; Feng, Q.; Yu, J.; Liu, J. Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin. Earth Planet. Sci. Lett. 2019, 511, 130–140. 78. Raven, M.R.; Adkins, J.F.; Werne, J.P.; Lyons, T.W.; Sessions, A.L. Sulfur isotopic composition of individual organic compounds from Cariaco Basin sediments. Org. Geochem. 2015, 80, 53–59. 79. Raven, M.R.; Fike, D.A.; Gomes, M.L.; Webb, S.M.; Bradley, A.S.; McClelland, H.-L.O. Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization. Nat. Commun. 2018, 9, 3409. 80. Rickard, D. Sulfidic Sediments and Sedimentary Rocks, 1st ed. Elsevier: Amsterdam, The Netherlands, 2012; pp. 1–816. 81. Seal, R.R. Sulfur isotope geochemistry of sulfide minerals. Rev. Mineral. Geochem. 2006, 61, 633–677. 82. Large, R.R.; Halpin, J.A.; Danyushevsky, L.V.; Maslennikov, V.V.; Bull, S.W.; Long, J.A.; Gregory, D.D.; Lounejeva, E.; Lyons, T.W.; Sack, P.J.; et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth Planet. Sci. Lett. 2014, 389, 209–220. 83. Morse, J.W.; Luther, G.W. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta 1999, 63, 3373–3378.