Цитирование: | 1. Gangwar, J., Gupta, B.K., Tripathi, S.K., Srivastava, A.K., Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis. Nanoscale, 7, 2015, 13313.
2. Kurland, H.-D., Grabow, J., Müller, F.A., Preparation of ceramic nanospheres by CO2 laser vaporization (LAVA). J. Eur. Ceram. Soc. 31 (2011), 2559–2568.
3. Kim, M., Osone, S., Kim, T., Higashi, H., Seto, T., Synthesis of Nanoparticles by Laser Ablation: A Review. Kona Powder Part. J., 34, 2017, 1.
4. Shirk, M.D., Molian, P.A., A review of ultrashort pulsed laser ablation of materials. J. Laser Appl., 10, 1998, 18.
5. Lam, J., Amans, D., Chaput, F., Diouf, M., Ledoux, G., Mary, N., Masenelli-Varlot, K., Motto-Ros, V., Dujardin, C., γ-Al2O3 nanoparticles synthesised by pulsed laser ablation in liquids: a plasma analysis. Phys. Chem. Chem. Phys., 16, 2014, 963.
6. Bartolomé, J.F., Smirnov, A., Kurland, H.-D., Grabow, J., Müller, F.A., New ZrO2/Al2O3 nanocomposite fabricated from hybrid nanoparticles prepared by CO2 laser co-vaporization. Sci. Rep. 6:20589 (2016), 1–11.
7. Wenisch, C., Kurland, H.-D., Grabow, J., Müller, F.A., Europium (III)-Doped MgAl2O4 spinel nanophosphor prepared by CO2 laser co-vaporization. J. Am. Ceram. Soc. 99:8 (2016), 2561–2564.
8. Zollfrank, C., Gruber, S., Batentschuk, M., Osvet, A., Goetz-Neunhoeffer, F., Dittrich, S., Grabow, J., Kurland, H.-D., Müller, F.A., Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization. Acta Mater., 61, 2013, 7133.
9. Arrii, S., Morfin, F., Renouprez, A.J., Rousset, J.L., Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution. J. AM. CHEM. SOC., 126, 2004, 1199.
10. Renouprez, A., Rousset, J.L., Cadrot, A.M., Soldo, Y., Stievano, L., Structure and catalytic activity of palladium–platinum aggregates obtained by laser vaporisation of bulk alloys. J. Alloy. Compd., 328, 2001, 50.
11. Kostyukov, A.I., Snytnikov, V.N., Zhuzhgov, A.V., Cherepanova, S.V., Ishchenko, A.V., Baronskiy, M.G., Snytnikov, V.N., Size-dependent photoluminescence of europium in alumina nanoparticles synthesized by cw CO2 laser vaporization. J. Alloy. Compd., 815, 2020, 152476.
12. Sajti, C.L., Sattari, R., Chichkov, B., Barcikowski, S., Ablation efficiency of α-Al2O3 in liquid phase and ambient air by nanosecond laser irradiation. Appl. Phys. A, 100, 2010, 203.
13. Khan, S.Z., Liu, Z., Li, L., Characteristics of γ -Al2O3 nanoparticles generated by continuous-wave laser ablation in liquid. Appl. Phys. A, 101, 2010, 781.
14. Liu, I.L., Lin, B.C., Chen, S.Y., Shen, P., NaAlO2 and γ-Al2O3 nanoparticles by pulsed laser ablation in aqueous solution. J. Phys. Chem. C, 115, 2011, 4994.
15. Zeng, H., Du, X.-W., Singh, S.C., Kulinich, S.A., Yang, S., He, J., Cai, W., Nanomaterials via laser ablation/irradiation in liquid: A Review. Adv. Funct. Mater., 22, 2012, 1333.
16. Rafique, M., Rafique, M.S., Butt, S.H., Afzal, A., Kalsoom, U., Laser nature dependence on enhancement of optical and thermal properties of copper oxide nanofluids. Appl. Surf. Sci. 483 (2019), 187–193.
17. M. Rafque, M. S. Rafque, U. Kalsoom,·A. Afzal, S. H. Butt, A. Usman, Laser ablation synthesis of silver nanoparticles in water and dependence on laser nature. Optical and Quantum Electronics 51:179 (2019), 1-11.
18. Yang, X.C., Riehemann, W., Dubiel, M., Hofmeister, H., Nanoscaled ceramic powders produced by laser ablation. Mater. Sci. Eng., B, 95, 2002, 299.
19. U. Popp, R. Herbig, G.Michel, E. Müller, Ch. Oestreich, Properties of nanocrystalline ceramic powders prepared by laser evaporation and recondensation. 18 (1998) 1153.
20. Geraint Williams and Gary S. V. Coles, Gas sensing properties of nanocrystalline metal oxide powders produced by a laser evaporation technique. J. Mater. Chem. 8(7) (1998) 1657.
21. Müller, E., Oestreich, C., Popp, U., Michel, G., Staupendahl, G., Henneberg, K.-H., Characterization of nanocrystalline oxide powders prepared by CO2 laser Evaporation. Kona Powder Part. J., 13, 1995, 79.
22. Yatsui, K., Yukawa, T., Grigoriu, C., Hirai, M., Jiang, W., Synthesis of ultrafine γ-Al2O3 powders by pulsed laser ablation. J. Nanopart. Res., 2, 2000, 75.
23. A. Kostyukov, M. Baronskiy, A. Rastorguev, V. Snytnikov, Vl. Snytnikov, A. Zhuzhgov and A. Ishchenko, Photoluminescence of Cr3+ in nanostructured Al2O3 synthesized by evaporation using a continuous wave CO2 laser. RSC Adv. 6 (2016) 2072.
24. A. I. Kostyukov, A. V. Zhuzhgov, V. V. Kaichev, A. A. Rastorguev, Vl. N. Snytnikov, V. N. Snytnikov, Photoluminescence of oxygen vacancies in nanostructured Al2O3. Optical Materials 75 (2018) 757.
25. Kostyukov, A.I., Snytnikov, V.N., Snytnikov, Vl.N., Ishchenko, A.V., Rakhmanova, M.I., Krylov, A.S., Aleksandrovsky, A.S., Luminescence of monoclinic Y2O3: Eu nanophosphor produced via laser vaporization. Opt. Mater., 104, 2020, 109843.
26. Berezovskaya, I.V., Khomenko, O.V., Poletaev, N.I., Khlebnikova, M.E., Stoyanova, I.V., Efryushina, N.P., Dotsenko, V.P., Oxidation states and microstructure of manganese impurity centers in nanosized Al2O3 obtained by combustion method. Funct. Mater., 25, 2018, 490.
27. Berezovskaya, I.V., Poletaev, N.I., Khlebnikova, M.E., Zatovsky, I.V., Bychkov, K.L., Efryushina, N.P., Khomenko, O.V., Dotsenko, V.P., Luminescence study of nanosized Al2O3:Tb3+ obtained by gas-dispersed synthesis. Methods Appl. Fluoresc., 4, 2016, 034011.
28. Jbara, A.S., Othaman, Z., Saeed, M.A., Structural, morphological and optical investigations of θ-Al2O3 ultrafine powder. J. Alloy. Compd. 718 (2017), 1–6.
29. Costa, T.M.H., Gallas, M.R., Benvenutti, E.V., da Jornada, J.A.H., Study of Nanocrystalline γ-Al2O3 Produced by High-Pressure Compaction. J. Phys. Chem. B, 103, 1999, 4278.
30. Rastorguev, A., Baronskiy, M., Zhuzhgov, A., Kostyukov, A., Krivoruchko, O., Snytnikov, V., Local structure of low-temperature γ-Al2O3 phases as determined by the luminescence of Cr3+ and Fe3+. RSC Adv., 5, 2015, 5686.
31. Baronskiy, M., Rastorguev, A., Zhuzhgov, A., Kostyukov, A., Krivoruchko, O., Snytnikov, V., Photoluminescence and Raman spectroscopy studies of low-temperature γ-Al2O3 phases synthesized from different precursors. Opt. Mater., 53, 2016, 87.
32. Ingram-Jones, V.J., Davies, R.C.T., Southern, J.C., Salvador, S., Dehydroxylation sequences of gibbsite and boehmite: study of differences between soak and flash calcination and of particle-size effects. J. Mater. Chem., 6, 1996, 73.
33. Strekopytov, S., Exley, C., Thermal analyses of aluminium hydroxide and hydroxyaluminosilicates. Polyhedron, 25, 2006, 1707.
34. H. P. Ho. Aluminum Hydroxides and Oxyhydroxides. Minerals in Soil Environments (2nd Edition) SSSA Book Series, no. 1. 1989. P. 48.
35. Bokhimi, X., Toledo-Antonio, J.A., Guzman-Castillo, M.L., Mar-Mar, B., Hernandez-Beltran, F., Navarrete, J., Dependence of boehmite thermal evolution on its atom bond lengths and crystallite size. J. Solid State Chem., 161, 2001, 319.
36. Chang, P.-L., Wu, Y.-C., Lai, S.-J., Yen, F.-S., Size effects on χ- to α-Al2O3 phase transformation. J. Eur. Ceram. Soc., 29, 2009, 3341.
37. Kim, H., Kosuda, K.M., Van Duyne, R.P., Stair, P.C., Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem. Soc. Rev., 39, 2010, 4820.
38. Khatim, O., Nguyen, T.H.N., Amamra, M., Museur, L., Khodan, A., Kanaev, A., Synthesis and photoluminescence properties of nanostructured mullite/α-Al2O3. Acta Mater., 71, 2014, 108.
39. Trinkler, L., Berzina, B., Jakimovica, D., Grabis, J., Steins, I., UV-light induced luminescence processes in Al2O3 bulk and nanosize powders. Opt. Mater., 32, 2010, 789.
40. Trinkler, L., Berzina, B., Jakimovica, D., Grabis, J., Steins, I., Peculiarities of photoluminescence of Al2O3 bulk and nanosize powders at low temperatures. Opt. Mater., 33, 2011, 817.
41. Trinkler, L., Berzina, B., Jevsjutina, Z., Grabis, J., Steins, I., Baily, C.J., Photoluminescence of Al2O3 nanopowders of different phases. Opt. Mater., 34, 2012, 1553.
42. Gorbunov, S.V., Zatsepin, A.F., Pustovarov, V.A., Cholakh, S.O., Yakovlev, V.Y., Electronic excitations and defects in nanostructural Al2O3. Phys. Solid State, 47(4), 2005, 733.
43. Oja, M., Toldsepp, E., Feldbach, E., Magi, H., Omelkov, S., Luminescence study of alumina nanopowders prepared by various methods. M. Kirm. Radiat. Meas., 90, 2016, 75.
44. Rodriguez, M.G., Denis, G., Akselrod, M.S., Underwood, T.H., Yukihara, E.G., Thermoluminescence, optically stimulated luminescence and radioluminescence properties of Al2O3:C. Mg. Radiat. Meas., 46, 2011, 1469.
45. Evans, B.D., A review of the optical properties of anion lattice vacancies, and electrical conduction in α-Al2O3: their relation to radiation-induced electrical degradation. J. Nucl. Mater., 219, 1995, 202.
46. Breysse, M., Coudurier, G., Claudel, B., Faure, L., Luminescence investigation of the surface states of η-alumina. Correlation with the infra-red study of the evolution of the surface hydroxyl groups. J. Lumin., 26, 1982, 239.
47. Gorbunov, S.V., Cholakh, S.O., Pustovarov, V.A., Yakovlev, V.Y., Zatsepin, A.F., Kucharenko, A.I., Electronic excitations and intrinsic defects in nanostructural Al2O3. Phys. Status Solidi, 2, 2005, 351.
48. Kristianpoller, N., Rehavi, A., Shmilevich, A., Weiss, D., Chen, R., Radiation effects in pure and doped Al2O3 crystals. Nucl. Instruments Meth. Phys. Res. B, 141, 1998, 343.
49. Kortov, V.S., Pustovarov, V.A., Shtang, T.V., Defect evolution and photoluminescence in anion-defective alumina single crystals exposed to high doses of gamma-rays. Radiat. Meas., 85, 2016, 51.
50. Izerrouken, M., Benyahia, T., Absorption and photoluminescence study of Al2O3 single crystal irradiated with fast neutrons. Nucl. Instruments Meth. Phys. Res. B, 268, 2010, 2987.
51. V.N. Makhov, A. Lushchik, Ch. B. Lushchik, M. Kirm, E. Vasil'chenko, S. Vielhauer, V.V. Harutunyan, E. Aleksanyan, Luminescence and radiation defects in electron-irradiated Al2O3 and Al2O3:Cr. Nuclear Instruments and Methods in Physics Research B 266 (2008) 2949.
52. Stoyanovskii, V.O., Snytnikov, V.N., Laser-induced luminescence associated with surface hydroxide groups in Al2O3. Kinet. Catal., 50, 2009, 450.
53. Vedyagin, A.A., Volodin, A.M., Stoyanovskii, V.O., Mishakov, I.V., Medvedev, D.A., Noskov, A.S., Characterization of active sites of Pd/Al2O3 model catalysts with low Pd content by luminescence, EPR and ethane hydrogenolysis. Appl. Catal. B, 103, 2011, 397.
54. Shen, Y.F., Suib, S.L., Deeba, M., Koermer, G.S., Luminescence and IR characterization of acid sites on alumina. J. Catal., 146, 1994, 483.
55. Jeziorowski, H., Knozinger, H., Laser induced electronic excitation of surface hydroxide ions and scattering background in laser raman spectra of oxide surfaces. Chem. Phys. Lett., 51, 1977, 519.
56. Snytnikov, V.N., Stoyanovskii, V.O., Ushakov, V.A., Parmon, V.N., Luminescence of Al2O3 crystal modifications excited by the ArF excimer laser. Kinet. Catal., 46, 2005, 260.
57. Lipkin, D.M., Schaffer, H., Adar, F., Clarke, D.R., Lateral growth kinetics of α-alumina accompanying the formation of a protective scale on (111) NiAl during oxidation at 1100 °C. Appl. Phys. Lett., 70, 1997, 2550.
58. Baronskiy, M.G., Kostyukov, A.I., Larina, T.V., Snytnikov, V.N., Zaitseva, N.A., Zhuzhgov, A.V., Photoluminescence of surface chromium centers in the Cr/Al2O3 system that is active in isobutane dehydrogenation. Mater. Chem. Phys., 234, 2019, 403.
59. Brik, M.G., Camardello, S.J., Srivastava, A.M., Avram, N.M., Suchocki, A., Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect. ECS J. Solid State Sci. Technol., 5(1), 2016, R3067.
60. Brik, M.G., Srivastava, A.M., Critical Review–A Review of the Electronic Structure and optical properties of ions with d3 electron configuration (V2+, Cr3+, Mn4+, Fe5+) and main related misconceptions. ECS J. Solid State Sci. Technol., 7(1), 2018, R3079.
61. Mo, C.-M., Zhang, L., Yao, X., Fan, X., Fluorescence associated with Fe3+ ions in nanostructured Al2O3. J. Appl. Phys., 76, 1994, 5453.
62. Monteiro, T., Boemare, C., Soares, M.J., Alves, E., Marques, C., McHargue, C., Ononye, L.C., Allard, L.F., Luminescence and structural studies of iron implanted α-Al2O3. Nuclear Instruments Meth. Phys. Res. B, 191, 2002, 638.
63. Powell, R.C., Venikouas, G.E., Xi, L., Tyminski, J.K., Thermal effects on the optical spectra of Al2O3:Ti3+. J. Chem. Phys., 84, 1986, 662.
64. Molnár, G., Benabdesselam, M., Borossay, J., Lapraz, D., Iacconi, P., Kortov, V.S., Surdo, A.I., Photoluminescence and thermoluminescence of titanium ions in sapphire crystals. Radiat. Meas., 33, 2001, 663.
65. Mikhailik, V.B., Di Stefano, P.C.F., Henry, S., Kraus, H., Lynch, A., Tsybulskyi, V., Verdier, M.A., Studies of concentration dependences in the luminescence of Ti-doped Al2O3. J. Appl. Phys., 109, 2011, 053116.
66. Zeng, G., Dong, Q., Bao, W., Luminescent properties of Ti3+-doped γ-Al2O3 powder. J. Phys. D: Appl. Phys., 46, 2013, 305301.
67. V.B. Mikhailik, H. Kraus, M. Balcerzyk, W. Czarnacki, M. Moszyński, M.S. Mykhaylyk, D. Wahl, Low-temperature spectroscopic and scintillation characterisation of Ti-doped Al2O3. Nuclear Instruments and Methods in Physics Research A 546 (2005) 523.
68. Champagnon, B., Duval, E., Emission spectrum of V4+- alpha Al2O3: Jahn-Teller effect in the fundamental 2T2g and excited 2Eg states. J. Phys. C Solid State Phys., 12, 1979, L425.
69. Pott, G.T., Stork, W.H.J., Transition metal ion photoluminescence as a technique for the study of structures of oxidic catalysts. Catal. Rev., 12, 1975, 163.
70. Kirm, M., Feldbach, E., Kotlov, A., Liblik, P., Lushchik, A., Oja, M., Palcevskis, E., VUV spectroscopy and electronic excitations in nano-size alumina. Radiat. Meas., 45, 2010, 618.
71. Orlovskii, Yu.V., Popov, A.V., Platonov, V.V., Fedorenko, S.G., Sildos, I., Osipov, V.V., Fluctuation kinetics of fluorescence hopping quenching in the Nd3+:Y2O3 spherical nanoparticles. J. Lumin. 139 (2013), 91–97.
72. Hassan Butta, S., Rafiquea, M.S., Bashir, S., Mehmood, K., Mahmood, A., Aliovalent Ho3+ ion doped BaZrO3 thin films; Structural, optical and photoluminescence properties. Ceram. Int. 45 (2019), 5648–5652.
|