Инд. авторы: Ganbat A., Tsujimori T., Pastor-galán D., Anaad C., Baatar M., Miao L., Safonova I.Yu, Savinskiy I., Aoki S., Aoki K.
Заглавие: Late paleozoic–early mesozoic granitoids in the khangay-khentey basin, central mongolia: implication for the tectonic evolution of the mongol-okhotsk ocean margin
Библ. ссылка: Ganbat A., Tsujimori T., Pastor-galán D., Anaad C., Baatar M., Miao L., Safonova I.Yu, Savinskiy I., Aoki S., Aoki K. Late paleozoic–early mesozoic granitoids in the khangay-khentey basin, central mongolia: implication for the tectonic evolution of the mongol-okhotsk ocean margin // Lithos. - 2021. - Vol.404-405. - Art.106455. - ISSN 0024-4937. - EISSN 1872-6143.
Внешние системы: DOI: 10.1016/j.lithos.2021.106455; РИНЦ: 46993848;
Реферат: eng: The Mongol-Okhotsk Belt is the youngest segment of the Central Asian Orogenic Belt, which is the venue of the massive juvenile crust emplacement, and its formation and evolutions are still pending problems. This paper presents the first up-to-date U–Pb zircon ages, Hf-in-zircon isotope, geochemical and whole-rock Nd isotope data from igneous rocks of the Khangay-Khentey basin, Central Mongolia. The U–Pb zircon ages indicate three groups of magmatism at ~296 Ma, ~280 Ma, and ~230 Ma. The ~296 Ma magmatic rocks are characterized by negative εHf(t) and εNd(t) values and old Hf and Nd model ages suggesting their derivation by the melting of the crustal source. The ~280 Ma rocks are A2-type monzonites, granitoids, and rhyolites show positive εHf(t) and εNd(t) values and Neoproterozoic Hf and Nd model ages. The geochemical and isotope data suggest that ~280 Ma magmatism derived by the melting of a crustal source, induced by mantle upwelling. The ~230 Ma rock assemblage includes granitoids and volcanic rocks. The I-type calc-alkaline granitoids are enriched in K, Rb, U, and Th. The geochemical characteristics suggest that they have formed by the melting of a hornblende-bearing crustal source with the participation of fluids separated from the subducting slab. The positive εHf(t) and εNd(t) ~230 Ma rocks suggest partial melting of a depleted lower crustal material with the contribution of ancient crustal material. The ~296 Ma granitoids possess coherent/coupled Nd–Hf isotopic compositions supporting their origin from the ancient crust. Although the number of ~296 Ma samples are small, we suggest that they were probably emplaced at an active continental setting, ~280 Ma samples could have formed in a setting of local extension environment, ~230 Ma granitoids were also formed at an active continental margin. These magmatic rocks formed during the subduction of the Mongol-Okhotsk oceanic plate beneath the Central Mongolia-Erguna Block.
Ключевые слова: Nd isotope; Mongol-Okhotsk Ocean; Hf-in-zircon; geochronology; crustal evolution; caob;
Издано: 2021
Физ. характеристика: 106455
Цитирование: 1. Amar-Amgalan, S., U-Pb Geochronology and Multi-Isotopic Systematics of Granitoids from Mongolia, Central Asian Orogenic Belt: Implications for Granitoid Origin and Crustal Growth during the Phanerozoic. Unpublished Ph.D. Thesis. 2008, Okayama University, Japan, 162. 2. Aoki, S., Aoki, K., Tsujimori, T., Sakata, S., Tsuchiya, Y., Oceanic-arc subduction, stagnation, and exhumation: zircon U-Pb geochronology and trace-element geochemistry of the Sanbagawa eclogites in Central Shikoku, SW Japan. Lithos, 358, 2020, 105378, 10.1016/j.lithos.2020.105378. 3. Badarch, G., Cunningham, W.D., Windley, B.F., A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J. Asian Earth Sci. 21 (2002), 87–110, 10.1016/S1367-9120(02)00017-2. 4. Barnes, C.G., Ernst, W.G., Berry, R., Tsujimori, T., Petrology and geochemistry of an upper crustal pluton: a view into crustal-scale magmatism during arc to retro-arc transition. J. Petrol. 57:7 (2016), 1361–1388, 10.1093/petrology/egw043. 5. Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C., TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol. 200 (2003), 155–170, 10.1016/S0009-2541(03)00165-7. 6. Bonin, B., A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97 (2007), 1–29, 10.1016/j.lithos.2006.12.007. 7. Bouvier, A., Vervoort, J.D., Patchett, P.J., The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273 (2008), 48–57. 8. Bussien, D., Gombojav, N., Winkler, W., Von Quadt, A., The Mongol-Okhotsk Belt in Mongolia—an appraisal of the geodynamic development by the study of sandstone provenance and detrital zircons. Tectonophysics 510 (2011), 132–150, 10.1016/j.tecto.2011.06.024. 9. Chappell, B.W., Bryant, C.J., Wyborn, D., Peraluminous I-type granites. Lithos 153 (2012), 142–153, 10.1016/j.lithos.2012.07.008. 10. Chen, G.N., Grapes, R., Granite Genesis: In-Situ Melting and Crustal Evolution. first ed., 2007, Springer. Dordrecht, Netherlands. 11. Chu, Z.Y., Wu, F.Y., Walker, R.J., Rudnick, R.L., Pitcher, L., Puchtel, I.S., Yang, Y.H., Wilde, S.A., Temporal evolution of the lithospheric mantle beneath the eastern North China Craton. J. Petrol. 50:10 (2009), 1857–1898. 12. Clemens, J.D., Stevens, G., Bryan, S.E., Conditions during the formation of granitic magmas by crustal melting–hot or cold; drenched, damp or dry?. Earth Sci. Rev., 200, 2020, 102982. 13. Collins, W.J., Huang, H.Q., Bowden, P., Kemp, A.I.S., Repeated S–I–A-type granite trilogy in the Lachlan Orogen and geochemical contrasts with A-type granites in Nigeria: implications for petrogenesis and tectonic discrimination. Geol. Soc. Lond., Spec. Publ. 491 (2020), 53–76, 10.1144/SP491-2018-159. 14. Dagvadorj, D., Bold, G., Chuluun, D., Gundsambuu, Ts, Geological Map of the Central and Eastern Mongolia, Scale 1:500,000. 1993, Institute of Geological Research Regional Geological Sector, Ministry of Heavy industrial (in Mongolian). 15. Dagva-Ochir, L., Oyunchimeg, T.U., Enkhdalai, B., Safonova, I., Li, H., Otgonbaatar, D., Tamehe, L.S., Sharav, D., Middle Paleozoic intermediate-mafic rocks of the Tsoroidog Uul'accretionary complex, Central Mongolia: Petrogenesis and tectonic implications. Lithos, 376, 2020, 105795, 10.1016/j.lithos.2020.105795. 16. Dahlquist, J.A., Alasino, P.H., Eby, G.N., Galindo, C., Casquet, C., Fault controlled Carboniferous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): Geochemical constraints and petrogenesis. Lithos 115 (2010), 65–81. 17. Dolzodmaa, B., Osanai, Y., Nakano, N., Adachi, T., Zircon U-Pb geochronology and geochemistry of granitic rocks in Central Mongolia. Mongolian Geosci. 50 (2020), 23–44, 10.5564/mgs.v50i0.1327. 18. Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., Ivanov, A.V., Late Paleozoic–Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean. J. Asian Earth Sci. 62 (2013), 79–97, 10.1016/j.jseaes.2012.07.023. 19. Eby, G.N., Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20 (1992), 641–644. 20. Ehiro, M., Zakharov, Y.U., Minjni, C., Early Triassic (Olenekian) ammonoids from Khentey Province, Mongolia, and their paleobiogeographic significance. Bull. Tohoku Univ. Museum, 2006, 83–97. 21. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., A geochemical classification for granitic rocks. J. Petrol. 42 (2001), 2033–2048. 22. Ganbat, A., Tsujimori, T., Boniface, N., Pastor-Galán, D., Aoki, S., Aoki, K., Crustal evolution of the Paleoproterozoic Ubendian Belt (SW Tanzania) western margin: a Central African Shield amalgamation tale. Gondwana Res. 91 (2021), 286–306, 10.1016/j.gr.2020.12.009. 23. Ganbat, A., Pastor-Galán, D., Hirano, N., Nakamura, N., Sumino, H., Yamaguchi, Y., Tsujimori, T., Cretaceous to Miocene NW Pacific Plate kinematic constraints: Paleomagnetism and Ar-Ar geochronology in the Mineoka Ophiolite Mélange (Japan). Journal of Geophysical Research: Solid Earth, v. 126, 2021, 10.1029/2020JB021492 e2020JB021492. 24. Goldstein, S.J., Jacobsen, S.B., Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth Planet. Sci. Lett. 87 (1988), 249–265. 25. Grebennikov, A.V., Khanchuk, A.I., Gonevchuk, V.G., Kovalenko, S.V., Cretaceous and Paleogene granitoid suites of the Sikhote-Alin area (Far East Russia): Geochemistry and tectonic implications. Lithos 261 (2016), 250–261, 10.1016/j.lithos.2015.12.020. 26. Green, T.H., Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem. Geol. 120 (1995), 347–359. 27. Griffin, W.L., Belousova, E.A., Shee, S.R., Pearson, N.J., O'Reilly, S.Y., Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Res. 131 (2004), 231–282, 10.1016/j.precamres.2003.12.011. 28. Hara, H., Kurihara, T., Tsukada, K., Kon, Y., Uchino, T., Suzuki, T., Takeuchi, M., Nakane, Y., Nuramkhaan, M., Chuluun, M., Provenance and origins of a late Paleozoic accretionary complex within the Khangai–Khentei belt in the Central Asian Orogenic Belt, Central Mongolia. J. Asian Earth Sci. 75 (2013), 141–157, 10.1016/j.jseaes.2013.06.006. 29. Harada, H., Tsujimori, T., Kunugiza, K., Yamashita, K., Aoki, S., Aoki, K., Takayanagi, H., Iryu, Y., The δ13C–δ18O variations in marble in the Hida Belt, Japan. Island Arc, 40, 2021, e12389, 10.1111/iar.12389. 30. Hoffmann, J.E., Münker, C., Polat, A., Rosing, M.T., Schulz, T., The origin of decoupled Hf–Nd isotope compositions in Eoarchean rocks from southern West Greenland. Geochim. Cosmochim. Acta 75 (2011), 6610–6628, 10.1016/j.gca.2011.08.018. 31. Irvine, T.N., Baragar, W.R.A., A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8 (1971), 523–548. 32. Jacobsen, S.B., Wasserburg, G.J., Sm-Nd isotopic evolution of chondrites and achondrites, II. Earth Planet. Sci. Lett. 67 (1984), 137–150, 10.1016/0012-821X(84)90109-2. 33. Jahn, B.M., The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geol. Soc. Lond., Spec. Publ. 226 (2004), 73–100. 34. Jian, P., Kröner, A., Windley, B.F., Shi, Y., Zhang, W., Zhang, L., Yang, W., Carboniferous and cretaceous mafic–ultramafic massifs in Inner Mongolia (China): a SHRIMP zircon and geochemical study of the previously presumed integral “Hegenshan ophiolite”. Lithos 142 (2012), 48–66, 10.1016/j.lithos.2012.03.007. 35. Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke, A., Birbaum, K., Frick, D.A., Günther, D., Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand. Geoanal. Res. 35 (2011), 397–429, 10.1111/j.1751-908X.2011.00120.x. 36. Jones, M.R., Soule, S.A., Gonnermann, H.M., Le Roux, V., Clague, D.A., Magma ascent and lava flow emplacement rates during the 2011 Axial Seamount eruption based on CO2 degassing. Earth Planet. Sci. Lett. 494 (2018), 32–41, 10.1016/j.epsl.2018.04.044. 37. Kelty, T.K., Yin, A., Dash, B., Gehrels, G.E., Ribeiro, A.E., Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay–Hentey basin, north-Central Mongolia: implications for the tectonic evolution of the Mongol-Okhotsk Ocean in Central Asia. Tectonophysics 451 (2008), 290–311, 10.1016/j.tecto.2007.11.052. 38. Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., Kinny, P.D., Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439 (2006), 580–583. 39. Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M., Whitehouse, M.J., Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315 (2007), 980–983. 40. Kovach, V.P., Sal'nikova, E.B., Rytsk, E.Yu., Yarmolyuk, V.V., Kotov, A.B., Anisimova, I.V., Yakovleva, S.Z., Fedoseenko, A.M., Plotkina, Yu.V., The time length of formation of the Angara-Vitim Batholite: results of U-Pb geochronological studies. Dokl. Earth Sci. 444 (2012), 553–558. 41. Kovalenko, V.I., Yarmolyuk, V.V., Kovach, V.P., Kotov, A.B., Kozakov, I.K., Salnikova, E.B., Sources of Phanerozoic granitoids in Central Asia: Sm-Nd isotope data. Geochem. Int. 34 (1996), 628–640. 42. Kovalenko, V.I., Yarmolyuk, V.V., Kovach, V.P., Kotov, A.B., Kozakov, I.K., Salnikova, E.B., Larin, A.M., Isotope provinces, mechanism of generation and sources of the continental crust in the Central Asian Mobile Belt: geological and isotopic evidence. J. Asian Earth Sci. 23 (2004), 605–627. 43. Kozakov, I.K., Kovach, V.P., Bibikova, E.V., Kirnozova, T.I., Zagornaya, N.Y., Plotkina, Y.V., Podkovyrov, V.N., Age and sources of granitoids in the junction zone of the Caledonides and Hercynides in southwestern Mongolia: geodynamic implications. Petrology 15 (2007), 126–150. 44. Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A., Seltmann, R., Alexeiev, D.V., Hoffmann, J.E., Wong, J., Sun, M., Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res. 25 (2014), 103–125, 10.1016/j.gr.2012.12.023. 45. Lamb, M.A., Badarch, G., Hendrix, M.S., Davis, G.A., Paleozoic sedimentary basins and volcanic arc systems of southern Mongolia: new geochemical and petrographic constraints. Memoirs-Geol. Soc. Am., 2001, 117–150. 46. Le Bas, M., Maitre, R.L., Streckeisen, A., Zanettin, B., A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 27 (1986), 745–750. 47. Litvinovsky, B.A., Tsygankov, A.A., Jahn, B.M., Katzir, Y., Be'eri-Shlevin, Y., Origin and evolution of overlapping calc-alkaline and alkaline magmas: the late Palaeozoic post-collisional igneous province of Transbaikalia (Russia). Lithos 125 (2011), 845–874, 10.1016/j.lithos.2011.04.007. 48. Liu, H., Li, Y., He, H., Huangfu, P., Liu, Y., Two-phase southward subduction of the Mongol-Okhotsk oceanic plate constrained by Permian-Jurassic granitoids in the Erguna and Xing'an massifs (NE China). Lithos 304 (2018), 347–361, 10.1016/j.lithos.2018.01.016. 49. Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet. Sci. Lett. 243 (2006), 581–593, 10.1016/j.epsl.2005.12.034. 50. Maniar, P.D., Piccoli, P.M., Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 101 (1989), 635–643. 51. Maruyama, S., Seno, T., Orogeny and relative plate motions: Example of the Japanese Islands. Tectonophysics 127 (1986), 305–329, 10.1016/0040-1951(86)90067-3. 52. Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S., Vroon, P.Z., Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem. Geol. 255 (2008), 231–235, 10.1016/j.chemgeo.2008.06.040. 53. Morozumi, H., Geochemical characteristics of granitoids of the Erdenet porphyry copper deposit, Mongolia. Resour. Geol. 53 (2003), 311–316, 10.1111/j.1751-3928.2003.tb00180.x. 54. Moyen, J.F., High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos 112 (2009), 556–574. 55. Munkhtsengel, B., Ohara, M., Gerel, O., Dandar, S., Tsuchiya, N., Preliminary study of formation mechanism of the erdenetiin ovoo porphyry copper-molybdenum deposit and environmental effects of Erdenet Mine, Northern Mongolia. In AIP Conference Proceedings, 833, 204–207, 2007, Physics, American Institute of, 10.1063/1.2207106. 56. Pastor-Galán, D., Spencer, C.J., Furukawa, T., Tsujimori, T., Evidence for crustal removal, tectonic erosion and flare-ups from the Japanese evolving forearc sediment provenance. Earth Planet. Sci. Lett., 564, 2021, 116893, 10.1016/j.epsl.2021.116893. 57. Patiño Douce, A.E., Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25 (1997), 743–746. 58. Pearce, J.A., The role of sub-continental lithosphere in magma genesis at destructive plate margins. Continental Basalts and Mantle Xenoliths, 1983, Shiva Publishing, Nantwich, Cheshire, 230–249. 59. Pearce, J.A., Peate, D.W., Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 23 (1995), 251–286. 60. Pearce, J.A., Harris, N.B., Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25 (1984), 956–983. 61. Peccerillo, A., Taylor, S.R., Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol. 58 (1976), 63–81. 62. Rudnick, R.L., Gao, S., Composition of the continental crust. Gao, S., Holland, H.D., Turekian, K.K., (eds.) The Crust, 3, 2003, Elsevier, Amsterdam, Netherlands, 1–64. 63. Ruppen, D., Knaf, A., Bussien, D., Winkler, W., Chimedtseren, A., von Quadt, A., Restoring the Silurian to Carboniferous northern active continental margin of the Mongol-Okhotsk Ocean in Mongolia: Hangay–Hentey accretionary wedge and seamount collision. Gondwana Res. 25 (2014), 1517–1534, 10.1016/j.gr.2013.05.022. 64. Safonova, I., Juvenile versus recycled crust in the Central Asian Orogenic Belt: Implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs. Gondwana Res. 47 (2017), 6–27. 65. Safonova, I., Seltmann, R., Kröner, A., Gladkochub, D., Schulmann, K., Xiao, W., Kim, J., Komiya, T., Sun, M., A new concept of continental construction in the Central Asian Orogenic Belt. Episodes 34 (2011), 186–196. 66. Safonova, I., Kotlyarov, A., Krivonogov, S., Xiao, W., Intra-oceanic arcs of the Paleo-Asian Ocean. Gondwana Res. 50 (2017), 167–194. 67. Şengör, A.M.C., Natal'in, B.A., Burtman, V.S., Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364 (1993), 299–307. 68. Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Plešovice zircon–a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 249 (2008), 1–35, 10.1016/j.chemgeo.2007.11.005. 69. Söderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E., The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 219 (2004), 311–324, 10.1016/S0012-821X(04)00012-3. 70. Sorokin, A.A., Zaika, V.A., Kovach, V.P., Kotov, A.B., Xu, W., Yang, H., Timing of closure of the eastern Mongol-Okhotsk Ocean: Constraints from U-Pb and Hf isotopic data of detrital zircons from metasediments along the Dzhagdy Transect. Gondwana Res. 81 (2020), 58–78, 10.1016/j.gr.2019.11.009. 71. Sun, S.S., McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond., Spec. Publ. 42 (1989), 313–345, 10.1144/GSL.SP.1989.042.01.19. 72. Sun, D.Y., Gou, J., Wang, T.H., Ren, Y.S., Liu, Y.J., Guo, H.Y., Liu, X.M., Hu, Z.C., Geochronological and geochemical constraints on the Erguna massif basement, NE China–subduction history of the Mongol-Okhotsk oceanic crust. Int. Geol. Rev. 55 (2013), 1801–1816. 73. Taylor, S.R., McLennan, S.M., The geochemical evolution of the continental crust. Rev. Geophys. 33 (1995), 241–265. 74. Tiepolo, M., Vannucci, R., The contribution of amphibole from deep arc crust to the silicate Earth's Nb budget. Lithos 208 (2014), 16–20, 10.1016/j.lithos.2014.07.028. 75. Tiepolo, M., Oberti, R., Zanetti, A., Vannucci, R., Foley, S.F., Trace-element partitioning between amphibole and silicate melt. Rev. Mineral. Geochem. 67 (2007), 417–452. 76. Tomurtogoo, O., Windley, B.F., Kröner, A., Badarch, G., Liu, D.Y., Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, Central Mongolia: constraints on the evolution of the Mongol-Okhotsk Ocean, suture and orogen. J. Geol. Soc. 162 (2005), 125–134, 10.1144/0016-764903-146. 77. Tumurchudur, D., Bold, G., Chuluun, D., Gundsambuu, Ts, Geological Map of the Ikh-Khorgo Area, Scale 1:50,000. 2006, Gurvantalst LLC, Mongolia (in Mongolian). 78. Turner, S.P., Foden, J.D., Morrison, R.S., Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia. Lithos 28 (1992), 151–179, 10.1016/0024-4937(92)90029-X. 79. Vermeesch, P., IsoplotR: a free and open toolbox for geochronology. Geosci. Front. 9:5 (2018), 1479–1493, 10.1016/j.gsf.2018.04.001. 80. Vervoort, J.D., Patchett, P.J., Blichert-Toft, J., Albarède, F., Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet. Sci. Lett. 168 (1999), 79–99. 81. Whalen, J.B., Currie, K.L., Chappell, B.W., A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 95 (1987), 407–419. 82. Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Further characterisation of the 91500 zircon crystal. Geostand. Geoanal. Res. 28 (2004), 9–39. 83. Wilhem, C., Windley, B.F., Stampfli, G.M., The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth Sci. Rev. 113 (2012), 303–341, 10.1016/j.earscirev.2012.04.001. 84. Windley, B.F., Alexeiev, D., Xiao, W., Kröner, A., Badarch, G., Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 164 (2007), 31–47, 10.1144/0016-76492006-022. 85. Xiao, W.J., Zhang, L.C., Qin, K.Z., Sun, S.H.U., Li, J.L., Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of Central Asia. Am. J. Sci. 304 (2004), 370–395. 86. Xiao, W., Huang, B., Han, C., Sun, S., Li, J., A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Res. 18 (2010), 253–273. 87. Yarmolyuk, V.V., Kovalenko, V.I., Sal'nikova, E.B., Budnikov, S.V., Kovach, V.P., Kotov, A.B., Ponomarchuk, V.A., Tectono-magmatic zoning, magma sources, and geodynamics of the Early Mesozoic Mongolia-Transbaikal province. Geotectonics 36 (2002), 293–311. 88. Yarmolyuk, V.V., Kuzmin, M.I., Ernst, R.E., Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt. J. Asian Earth Sci. 93 (2014), 158–179, 10.1016/j.jseaes.2014.07.004. 89. Yarmolyuk, V.V., Kozlovsky, A.M., Savatenkov, V.M., Kovach, V.P., Kozakov, I.K., Kotov, A.B., Lebedev, V.I., Eenjin, G., Composition, sources, and geodynamic nature of giant batholiths in Central Asia: evidence from the geochemistry and Nd isotopic characteristics of granitoids in the Khangai zonal magmatic area. Petrology 24 (2016), 433–461. 90. Yarmolyuk, V.V., Kozlovsky, A.M., Travin, A.V., Kirnozova, T.I., Fugzan, M.M., Kozakov, I.K., Plotkina, Y.V., Eenjin, G., Oyunchimeg, T., Sviridova, O.E., Duration and geodynamic nature of giant central Asian batholiths: geological and geochronological studies of the Khangai batholith. Stratigr. Geol. Correl. 27 (2019), 73–94. 91. Yi, Z., Meert, J.G., A closure of the Mongol-Okhotsk Ocean by the Middle Jurassic: Reconciliation of paleomagnetic and geological evidence. Geophys. Res. Lett., 47, 2020, 10.1029/2020GL088235. 92. Zhao, P., Xu, B., Jahn, B.M., The Mongol-Okhotsk Ocean subduction-related Permian peraluminous granites in northeastern Mongolia: Constraints from zircon U-Pb ages, whole-rock elemental and Sr-Nd-Hf isotopic compositions. J. Asian Earth Sci. 144 (2017), 225–242, 10.1016/j.jseaes.2017.03.022. 93. Zhu, M., Zhang, F., Miao, L., Baatar, M., Anaad, C., Yang, S., Li, X., Geochronology and geochemistry of the Triassic bimodal volcanic rocks and coeval A-type granites of the Olzit area, Middle Mongolia: Implications for the tectonic evolution of Mongol-Okhotsk Ocean. J. Asian Earth Sci. 122 (2016), 41–57, 10.1016/j.jseaes.2016.03.001. 94. Zhu, M., Zhang, F., Miao, L., Baatar, M., Anaad, C., Yang, S.H., Li, X.B., The late Carboniferous Khuhu davaa ophiolite in northeastern Mongolia: Implications for the tectonic evolution of the Mongol-Okhotsk Ocean. Geol. J. 53 (2018), 1263–1278.