Цитирование: | 1. Oganov, A. R.; Glass, C. W.; Ono, S. High-pressure phases of CaCO3: Crystal structure prediction and experiment. Earth Planet. Sci. Lett. 2006, 241, 95-103, 10.1016/j.epsl.2005.10.014
2. Pickard, C. J.; Needs, R. J. Structures and stability of calcium and magnesium carbonates at mantle pressures. Phys. Rev. B 2015, 91, 104101 10.1103/PhysRevB.91.104101
3. Lobanov, S. S.; Dong, X.; Martirosyan, N. S.; Samtsevich, A. I.; Stevanovic, V.; Gavryushkin, P. N.; Litasov, K. D.; Greenberg, E.; Prakapenka, V. B.; Oganov, A. R. et al. Raman spectroscopy and X-ray diffraction of sp3CaCO3at lower mantle pressures. Phys. Rev. B 2017, 96, 104101 10.1103/PhysRevB.96.104101
4. Ono, S.; Kikegawa, T.; Ohishi, Y. High-pressure transition of CaCO3. Am. Mineral. 2007, 92, 1246-1249, 10.2138/am.2007.2649
5. Oganov, A. R.; Ono, S.; Ma, Y.; Glass, C. W.; Garcia, A. Novel high-pressure structures of MgCO3, CaCO3and CO2and their role in Earth's lower mantle. Earth Planet. Sci. Lett. 2008, 273, 38-47, 10.1016/j.epsl.2008.06.005
6. Maeda, F.; Ohtani, E.; Kamada, S.; Sakamaki, T.; Hirao, N.; Ohishi, Y. Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO3and SiO2. Sci. Rep. 2017, 7, 40602 10.1038/srep40602
7. Boulard, E.; Gloter, A.; Corgne, A.; Antonangeli, D.; Auzende, A.-L.; Perrillat, J.-P.; Guyot, F.; Fiquet, G. New host for carbon in the deep Earth. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 5184-5187, 10.1073/pnas.1016934108
8. Boulard, E.; Pan, D.; Galli, G.; Liu, Z.; Mao, W. L. Tetrahedrally coordinated carbonates in Earth's lower mantle. Nat. Commun. 2015, 6, 6311 10.1038/ncomms7311
9. Čančarević, Ž. P.; Schoen, J. C.; Jansen, M. Possible existence of alkali metal orthocarbonates at high pressure. Chem.-Eur. J 2007, 13, 7330-7348, 10.1002/chem.200601637
10. Sagatova, D.; Shatskiy, A.; Sagatov, N.; Gavryushkin, P. N.; Litasov, K. D. Calcium orthocarbonate, Ca2CO4-Pnma: A potential host for subducting carbon in the transition zone and lower mantle. Lithos 2020, 370-371, 105637 10.1016/j.lithos.2020.105637
11. Binck, J.; Laniel, D.; L, B.; Khandarkhaeva, S.; Fedotenko, T.; Aslandukov, A.; Glazyrin, K.; Milman, V.; Chariton, S.; Prakapenka, V. B.; Dubrovinskaia, N.; Dubrovinsky, L.; Winkler, B. Synthesis of calcium orthocarbonate, Ca2CO4-Pnma at p,T-conditions of Earth's transition zone and lower mantle. Am. Mineral. 2021, 10.2138/am-2021-7872
12. Gavryushkin, P. N.; Sagatova, D. N.; Sagatov, N.; Litasov, K. D. The formation of Mg-orthocarbonate through the reaction MgCO3+ MgO = Mg2CO4at Earth's lower mantle P-T conditions. Cryst. Growth Des. 2021, 21, 2986-2992, 10.1021/acs.cgd.1c00140
13. Gavryushkin, P.; Sagatova, D.; Sagatov, N.; Banaev, M. Silicate-Like Crystallchemistry for Carbonates at High Pressure. Reality or Not. In Book of Abstracts IV Conference and School for Young Scientists Non-Ambient Diffraction and Nanomaterials; Saint Petersburg State University, 2020; p 38.
14. Laniel, D.; Binck, J.; Winkler, B.; Vogel, S.; Fedotenko, T.; Chariton, S.; Prakapenka, V.; Milman, V.; Schnick, W.; Dubrovinsky, L.; Dubrovinskaia, N. Synthesis, crystal structure and structure-property relations of strontium orthocarbonate, Sr2CO4. Acta Crystallogr. B 2021, 77, 131-137, 10.1107/S2052520620016650
15. Jansen, M. Zur natur von trinatriumorthonitrat. Z. Anorg. Allg. Chem. 1982, 491, 175-183, 10.1002/zaac.19824910122
16. Quesada-Cabrera, R.; Sella, A.; Bailey, E.; Leynaud, O.; McMillan, P. High-pressure synthesis and structural behavior of sodium orthonitrate Na3NO4. J. Solid State Chem. 2011, 184, 915-920, 10.1016/j.jssc.2011.02.013
17. Gao, L.; Zhang, H.; Wang, Y.; Li, S.; Zhao, R.; Wang, Y.; Gao, S.; He, L.; Song, H.-F.; Zou, R.; Zhao, Y. Mechanism of enhanced ionic conductivity by rotational nitrite group in antiperovskite Na3ONO2. J. Mater. Chem. A 2020, 8, 21265-21272, 10.1039/D0TA07110B
18. Bremm, T.; Jansen, M. Einkristallzüchtung und strukturanalyse von trikaliumorthonitrat. Z. Anorg. Allg. Chem. 1992, 608, 56-59, 10.1002/zaac.19926080209
19. Bremm, T.; Jansen, M. Synthese und strukturanalyse des gemischten alkalimetallorthonitrats Na3K3(NO4)2/Synthesis and X-ray structure determination of the mixed alkali metal orthonitrate Na3K3(NO4)2. Z. Naturforsch., B 1991, 46, 1031-1034, 10.1515/znb-1991-0810
20. Range, K.-J.; Wildenauer, M.; Heyns, A. M. Extremely short non-bonding oxygen-oxygen distances: The crystal structures of NbBO4, NaNb3O8, and NaTa3O8. Angew. Chem., Int. Ed. 1988, 27, 969-971, 10.1002/anie.198809691
21. Range, K.-J.; Wildenauerand, M.; Andratschke, M. Crystal structure of tantalum orthoborate, TaBO4. Z. Kristallogr.-Cryst. Mater. 1996, 211, 815-815, 10.1524/zkri.1996.211.11.815
22. Ross, S. The vibrational spectra of some minerals containing tetrahedrally co-ordinated boron. Spectrochim. Acta, Part A 1972, 28, 1555-1561, 10.1016/0584-8539(72)80126-0
23. Diehl, R.; Brandt, G. Refinement of the crystal structure of Fe3BO6. Acta Crystallogr. B 1975, 31, 1662-1665, 10.1107/S0567740875005870
24. Santamaría-Pérez, D.; Errandonea, D.; Gomis, O.; Sans, J.; Pereira, A.; Manjón, F.; Popescu, C.; Rodríguez-Hernández, P.; Muñoz, A. Crystal structure of sinhalite MgAlBO4under high pressure. J. Phys. Chem. C 2015, 119, 6777-6784, 10.1021/jp512131e
25. Pickard, C. J.; Needs, R. J. High-pressure phases of silane. Phys. Rev. Lett. 2006, 97, 045504 10.1103/PhysRevLett.97.045504
26. Pickard, C. J.; Needs, R. J. Ab initio random structure searching. J. Phys.: Condens. Matter 2011, 23, 053201 10.1088/0953-8984/23/5/053201
27. Oganov, A. R.; Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704 10.1063/1.2210932
28. Oganov, A. R.; Lyakhov, A. O.; Valle, M. How evolutionary crystal structure prediction works-and why. Acc. Chem. Res. 2011, 44, 227-237, 10.1021/ar1001318
29. Lyakhov, A. O.; Oganov, A. R.; Stokes, H. T.; Zhu, Q. New developments in evolutionary structure prediction algorithm uspex. Comput. Phys. Commun. 2013, 184, 1172-1182, 10.1016/j.cpc.2012.12.009
30. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169 10.1103/PhysRevB.54.11169
31. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50, 10.1016/0927-0256(96)00008-0
32. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865 10.1103/PhysRevLett.77.3865
33. Antao, S. M.; Hassan, I. The orthorhombic structure of CaCO3, SrCO3, PbCO3and BaCO3: Linear structural trends. Can. Mineral. 2009, 47, 1245-1255, 10.3749/canmin.47.5.1245
34. Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002 10.1063/1.4812323
35. Alfredsson, M.; Brodholt, J. P.; Wilson, P.; Price, G. D.; Cora, F.; Calleja, M.; Bruin, R.; Blanshard, L.; Tyer, R. Structural and magnetic phase transitions in simple oxides using hybrid functionals. Mol. Simul. 2005, 31, 367-377, 10.1080/08927020500066684
36. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1-5, 10.1016/j.scriptamat.2015.07.021
37. Gavryushkin, P. N.; Bekhtenova, A.; Lobanov, S. S.; Shatskiy, A.; Likhacheva, A. Y.; Sagatova, D.; Sagatov, N.; Rashchenko, S. V.; Litasov, K. D.; Sharygin, I. S. et al. High-pressure phase diagrams of Na2CO3and K2CO3. Minerals 2019, 9, 599 10.3390/min9100599
38. Gavryushkin, P. N.; Sagatov, N.; Belonoshko, A. B.; Banaev, M. V.; Litasov, K. D. Disordered aragonite: The new high-pressure, high-temperature phase of CaCO3. J. Phys. Chem. C 2020, 124, 26467-26473, 10.1021/acs.jpcc.0c08309
39. Gavryushkin, P. N.; Martirosyan, N. S.; Inerbaev, T. M.; Popov, Z. I.; Rashchenko, S. V.; Likhacheva, A. Y.; Lobanov, S. S.; Goncharov, A. F.; Prakapenka, V. B.; Litasov, K. D. Aragonite-II and CaCO3-VII: New high-pressure, high-temperature polymorphs of CaCO3. Cryst. Growth Des. 2017, 17, 6291-6296, 10.1021/acs.cgd.7b00977
40. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-1276, 10.1107/S0021889811038970
41. Stokes, H. T.; Hatch, D. M. FINDSYM: program for identifying the space-group symmetry of a crystal. J. Appl. Crystallogr. 2005, 38, 237-238, 10.1107/S0021889804031528
42. Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576-3586, 10.1021/cg500498k
43. Yao, X.; Xie, C.; Dong, X.; Oganov, A. R.; Zeng, Q. Novel high-pressure calcium carbonates. Phys. Rev. B 2018, 98, 014108 10.1103/PhysRevB.98.014108
44. Wang, M.; Liu, Q.; Nie, S.; Li, B.; Wu, Y.; Gao, J.; Wei, X.; Wu, X. High-pressure phase transitions and compressibilities of aragonite-structure carbonates: SrCO3and BaCO3. Phys. Chem. Miner. 2015, 42, 517-527, 10.1007/s00269-015-0740-2
45. Biedermann, N.; Speziale, S.; Winkler, B.; Reichmann, H. J.; Koch-Müller, M.; Heide, G. High-pressure phase behavior of SrCO3: an experimental and computational Raman scattering study. Phys. Chem. Miner. 2017, 44, 335-343, 10.1007/s00269-016-0861-2
46. Biedermann, N.; Bykova, E.; Morgenroth, W.; Efthimiopoulos, I.; Mueller, J.; Spiekermann, G.; Glazyrin, K.; Pakhomova, A.; Appel, K.; Wilke, M. Equation of state and high-pressure phase behaviour of SrCO3. Eur. J. Mineral. 2020, 32, 575-586, 10.5194/ejm-32-575-2020
47. Townsend, J. P.; Chang, Y.-Y.; Lou, X.; Merino, M.; Kirklin, S. J.; Doak, J. W.; Issa, A.; Wolverton, C.; Tkachev, S. N.; Dera, P. et al. Stability and equation of state of post-aragonite BaCO3. Phys. Chem. Miner. 2013, 40, 447-453, 10.1007/s00269-013-0582-8
48. Krivovichev, S. V. Minerals with antiperovskite structure: a review. Z. Kristallogr.-Cryst. Mater. 2008, 223, 109-113, 10.1524/zkri.2008.0008
49. Uchikawa, H.; Tsukiyama, K. Indexing of the powder X-ray diffraction patterns and precise determination of the crystal structure of Ba2SiO4. J. Ceram. Assoc. Jpn. 1965, 73, 106-110, 10.2109/jcersj1950.73.837_106
50. Porras-Vázquez, J. M.; Losilla, E. R.; León-Reina, L.; Martínez-Lara, M.; Aranda, M. A. Synthesis and characterization of a new family of mixed oxide-proton conductors based on tristrontium oxysilicate. Chem. Mater. 2008, 20, 2026-2034, 10.1021/cm703079d
51. Tillmanns, E.; Grosse, H.-P. Refinement of tribarium silicate. Acta Crystallogr. B 1978, 34, 649-651, 10.1107/S0567740878003696
52. Smith, D.; Lawler, K. V.; Martinez-Canales, M.; Daykin, A. W.; Fussell, Z.; Smith, G. A.; Childs, C.; Smith, J. S.; Pickard, C. J.; Salamat, A. Postaragonite phases of CaCO3at lower mantle pressures. Phys. Rev. Mater. 2018, 2, 013605 10.1103/PhysRevMaterials.2.013605
53. Binck, J.; Bayarjargal, L.; Lobanov, S. S.; Morgenroth, W.; Luchitskaia, R.; Pickard, C. J.; Milman, V.; Refson, K.; Jochym, D. B.; Byrne, P. et al. Phase stabilities of MgCO3and MgCO3-II studied by Raman spectroscopy, X-ray diffraction, and density functional theory calculations. Phys. Rev. Mater. 2020, 4, 055001 10.1103/PhysRevMaterials.4.055001
54. Spahr, D.; Binck, J.; Bayarjargal, L.; Luchitskaia, R.; Morgenroth, W.; Comboni, D.; Milman, V.; Winkler, B. Tetrahedrally coordinated sp3-hybridized carbon in Sr2CO4orthocarbonate at ambient conditions. Inorg. Chem. 2021, 60, 5419-5422, 10.1021/acs.inorgchem.1c00159
|