Инд. авторы: Belyanchikov M.A., Abramov P.A., Gorshunov B.P., Ragozin A.L., Fursenko D.A., Thomas V.G.
Заглавие: Distribution of d2o molecules of first and second types in hydrothermally grown beryl crystals
Библ. ссылка: Belyanchikov M.A., Abramov P.A., Gorshunov B.P., Ragozin A.L., Fursenko D.A., Thomas V.G. Distribution of d2o molecules of first and second types in hydrothermally grown beryl crystals // Crystal Growth & Design. - 2021. - Vol.21. - Iss. 4. - P.2283-2291. - ISSN 1528-7483. - EISSN 1528-7505.
Внешние системы: DOI: 10.1021/acs.cgd.0c01702; РИНЦ: 46763758;
Реферат: eng: This article reports on the uneven distribution of water molecules of first (D2O-I) and second (D2O-II) types in a D2O-containing beryl crystal grown hydrothermally on a non-singularly oriented flat seed {5.5.10¯.6}, as identified by infrared spectroscopic studies of crystal fragments. The distribution of D2O-II molecules is very heterogeneous, and their maximal concentrations are at the boundaries of the growth sectors of micro-faces, which protrude from the surface growth front {5.5.10¯.6}. We attribute this increase in the D2O-II content to the tensions and the resulting increased internal pressure at the boundaries of the growth sectors of micro-faces. Specifically, the increased internal pressure shifts the isomorphic substitution equation in beryl SiT14+ → AlT13+ + LiR″+ to the right (T1 and R″ denote the crystal's chemical positions of cations), which triggers the D2O-I → D2O-II transformation. The number of growth sector boundaries goes down as the growth front moves, reducing the number of areas with increased internal pressure and the proportion of D2O-II/D2O-I.
Издано: 2021
Физ. характеристика: с.2283-2291
Цитирование: 1. Bragg, W. L.; Claringbull, G. F. Crystal Structures of Minerals; G. Bell: London, 1965; p 409. 2. Bakakin, V. V.; Belov, N. V. Crystal chemistry of beryl. Geochemistry 1962, 5, 484-500 3. De Almeida Sampaio Filho, H.; Sighinolfi, G. P.; Galli, E. Contribution to the Crystal Chemistry of Beryl. Contrib. Mineral. Petrol. 1973, 38, 279-290, 10.1007/bf00373593 4. Aines, R. D.; Rossman, G. R. The high temperature behavior of water and carbon dioxide in cordierite and beryl. Am. Mineral. 1984, 69, 319-327 5. Mashkovtsev, R. I.; Smirnov, S. Z. The nature of channel constituents in hydrothermal synthetic emerald. J. Gemmol. 2004, 29, 129-141, 10.15506/jog.2004.29.4.215 6. Mashkovtsev, R. I.; Stoyanov, E. S.; Thomas, V. G. State of Molecules and Ions in the Structural Channels of Synthetic Beryl with an Ammonium Impurity. J. Struct. Chem. 2004, 45, 56-63, 10.1023/b:jory.0000041501.77617.72 7. Łodziński, M.; Sitarz, M.; Stec, K.; Kozanecki, M.; Fojude, Z.; Jurga, S. ICP, IR, Raman, NMR investigations of beryls from pegmatites of the Sudety Mts. J. Mol. Struct. 2005, 744-747, 1005-1015, 10.1016/j.molstruc.2004.12.042 8. Fukuda, J.; Shinoda, K.; Nakashima, S.; Miyoshi, N.; Aikawa, N. Polarized infrared spectroscopic study of diffusion of water molecules along structure channels in beryl. Am. Mineral. 2009, 94, 981-985, 10.2138/am.2009.3124 9. Lebedev, A. S.; Dokukin, A. A. The pressure effect on the incorporation of water in beryl during its hydrothermal synthesis. Physico-Chemical Studies of Sulfide and Silicate Systems; Kolonin, G. R., Ed.; Nauka, 1984; p 79-86. 10. Pankrath, R.; Langer, K. Molecular water in beryl, VIAl2[Be3Si6O18]·nH2O, as a function of pressure and temperature: An experimental study. Am. Mineral. 2002, 87, 238-244, 10.2138/am-2002-2-305 11. Kolesov, B. A.; Geiger, C. A. The orientation and vibrational states of H2O in synthetic alkali-free beryl. Phys. Chem. Miner. 2000, 27, 557-564, 10.1007/s002690000102 12. Gorshunov, B. P.; Zhukova, E. S.; Torgashev, V. I.; Lebedev, V. V.; Shakurov, G. m. S.; Kremer, R. K.; Pestrjakov, E. V.; Thomas, V. G.; Fursenko, D. A.; Dressel, M. Quantum Behavior of Water Molecules Confined to Nanocavities in Gemstones. J. Phys. Chem. Lett. 2013, 4, 2015-2020, 10.1021/jz400782j 13. Wood, D. L.; Nassau, K. The characterization of beryl and emerald by visible and infrared absorption spectroscopy. Am. Mineral. 1968, 53, 777-800 14. Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleska, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M. Incipient ferroelectricity of water molecules confined to nano-channels of beryl. Nat. Commun. 2016, 7, 12842, 10.1038/ncomms12842 15. Belyanchikov, M. A.; Savinov, M.; Bedran, Z. V.; Bednyakov, P.; Proschek, P.; Prokleska, J.; Abalmasov, V. A.; Petzelt, J.; Zhukova, E. S.; Thomas, V. G.; Dudka, A.; Zhugayevych, A.; Prokhorov, A. S.; Anzin, V. B.; Kremer, R. K.; Fischer, J. K. H.; Lunkenheimer, P.; Loidl, A.; Uykur, E.; Dressel, M.; Gorshunov, B. Dielectric ordering in dipolar lattice of water in cordierite. Nat. Commun. 2020, 11, 3927, 10.1038/s41467-020-17832-y 16. Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 1935, 57, 2680-2684, 10.1021/ja01315a102 17. Sansom, M. S. P.; Biggin, P. C. Biophysics: water at the nanoscale. Nature 2001, 414, 156-159, 10.1038/35102651 18. Born, B.; Kim, S. J.; Ebbinghaus, S.; Gruebele, M.; Havenith, M. The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin. Faraday Discuss. 2009, 141, 161-173, 10.1039/b804734k 19. Mashkovtsev, R. I.; Thomas, V. G.; Fursenko, D. A.; Zhukova, E. S.; Uskov, V. V.; Gorshunov, B. P. FTIR spectroscopy of D2O and HDO molecules in the c-axis channels of synthetic beryl. Am. Mineral. 2016, 101, 175-180, 10.2138/am-2016-5432 20. Lebedev, A. S.; Askhabov, A. M. Regeneration of beryl crystals. Zap. Vses. Mineral. O-va. 1984, 113, 618-628 21. Bekker, T. B.; Barz, R.-U. Study of Growth Faces in Hydrothermally Obtained Beryl Single Crystals Using (556)-Orientated Seeds. Cryst. Growth Des. 2007, 7, 1898-1903, 10.1021/cg0605483 22. Lebedev, A. S.; Il'in, A. G.; Klyakhin, V. A. Hydrothermally grown beryls of gem quality (in Russian). In Morphology and Phase Equilibria of Minerals. Proceedings of the 13th General Meeting of the International Mineralogical Association, Varna (Sofia, Bulgaria, 1982), 1986; Vol. 2, p 403-411. 23. Thomas, V. G.; Klyakhin, V. A. Specific features of incorporation of chromium in the beryl structure under hydrothermal conditions (experimental data). in Mineral Forming in Endogenic Processes; Sobolev, N. V., Ed.; Nauka: Novosibirsk, 1987; pp 60-67. 24. Shatsky, V. S.; Sitnikova, E. S.; Koz'menko, O. A.; Palessky, S. V.; Nikolaeva, I. V.; Zayachkovsky, A. A. Behavior of incompatible elements during ultrahigh-pressure metamorphism (by the example of rocks of the Kokchetav massif). Russ. Geol. Geophys. 2006, 47, 482-496 25. Jochum, K. P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.; Raczek, I.; Jacob, D. E.; Stracke, A.; Birbaum, K.; Frick, D. A.; Günther, D.; Enzweiler, J. Determination of Reference Values for NIST SRM 610 - 617 Glasses Following ISO Guidelines. Geostand. Geoanal. Res. 2011, 35, 397-429, 10.1111/j.1751-908x.2011.00120.x 26. Schmetzer, K. Characterization of Russian hydrothermally-grown synthetic emeralds. J. Gemmol. 1988, 21, 145-164, 10.15506/jog.1988.21.3.145 27. Thomas, V. G.; Daneu, N.; Rečnik, A.; Mashkovtsev, R. I.; Dražić, G.; Drev, S.; Demin, S. P.; Gavryushkin, P. N.; Fursenko, D. A. Micro-sectoriality in hydrothermally grown ruby crystals: the internal structure of the boundaries of the growth sectors. CrystEngComm 2017, 19, 6594-6601, 10.1039/c7ce01520h 28. Punin, Y. O.; Shtukenberg, A. G. Anomalous crystal optics of heterogeneous crystals. Crystallogr. Rep. 2005, 50, 297-307, 10.1134/1.1887905 29. Thomas, V. G.; Gavryushkin, P. N.; Fursenko, D. A. 2D Modeling of the Regeneration Surface Growth on Crystals. Crystallogr. Rep. 2012, 57, 848-859, 10.1134/s106377451204013x 30. Bakakin, V. V.; Rylov, G. M.; Belov, N. V. On the crystal structure of lithium-containing beryl. Dokl. Akad. Nauk SSSR 1969, 188, 659-662 31. Shannon, R. D. Revised Effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.. 1976, 32, 751-767, 10.1107/s0567739476001551 32. Thomas, V. G.; Daneu, N.; Mashkovtsev, R. I.; Rečnik, A.; Fursenko, D. A. The internal structure of hydrothermally grown leucosapphire crystals. CrystEngComm 2019, 21, 1122-1129, 10.1039/c8ce01796d 33. Stukenberg, A. G. Optical anomalies in solid solution crystals. Ph.D. thesis, 1997: S-Petersburg; p 16.