Инд. авторы: Antonova I.V., Nebogatikova N.A., Stepina N.P., Volodin V.A., Kirienko V.V., Golyashov V.A., Tereshchenko O.E., Kokh K.A., Rybin M.G., Obrazstova E.D.
Заглавие: Growth of bi2se3/graphene heterostructures with the room temperature high carrier mobility
Библ. ссылка: Antonova I.V., Nebogatikova N.A., Stepina N.P., Volodin V.A., Kirienko V.V., Golyashov V.A., Tereshchenko O.E., Kokh K.A., Rybin M.G., Obrazstova E.D. Growth of bi2se3/graphene heterostructures with the room temperature high carrier mobility // Journal of Materials Science. - 2021. - Vol.56. - Iss. 15. - P.9330-9343. - ISSN 0022-2461. - EISSN 1573-4803.
Внешние системы: DOI: 10.1007/s10853-021-05836-y; РИНЦ: 46747168;
Реферат: eng: Heterostructures of Bi2Se3 topological insulators were epitaxially grown on graphene by means of the physical vapor deposition at 500 °C. Micrometer-sized flakes with thickness 1 QL (quintuple layer ~ 1 nm) and films of millimeter-scale with thicknesses 2–6 QL had been grown on CVD graphene. The minimum thickness of large-scaled continuous Bi2Se3 films was found to be ~ 8 QL for the regime used. The heterostructures with a Bi2Se3 film thickness of > 10 QL had resistivity as low as 200–500 Ω/sq and a high room temperature carrier mobility ~ 1000–3400 cm2/Vs in the Bi2Se3/graphene interface channel. Moreover, the coexistence of a p-type graphene-related conductive channel, simultaneously with the n-type conductive surface channel of Bi2Se3, was observed. The improvement of the bottom Bi2Se3/graphene interface with the increase in the growth time clearly manifested itself in the increase of conductivity and carrier mobility in the grown layer. The grown Bi2Se3/G structures have lower resistivities and more than one order of magnitude higher carrier mobilities in comparison with the van der Waals Bi2Se3/graphene heterostructures created employing exfoliation of thin Bi2Se3 layers. The grown heterostructures demonstrated the properties that are perspective for new functional devices, for a variety of signal processing and logic applications.
Издано: 2021
Физ. характеристика: с.9330-9343
Цитирование: 1. Geim A, Grigorieva I (2013) Van der Waals heterostructures. Nature 499:419–425. 10.1038/nature12385 DOI: 10.1038/nature12385 2. Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH (2016) 2D materials and van der Waals heterostructures. Science 353:aac9439. 10.1126/science.aac9439 DOI: 10.1126/science.aac9439 3. Zhu W, Park S, Yogeesh MN, Akinwande D (2017) Advancements in 2D flexible nanoelectronics: from material perspectives to RF applications. Flex Print Electron 2:043001. 10.1088/2058-8585/aa84a4 DOI: 10.1088/2058-8585/aa84a4 4. Matsuhisa N, Chen X, Baoc Z, Someya T (2019) Materials and structural designs of stretchable conductors. Chem Soc Rev 48:2946. 10.1039/c8cs00814k DOI: 10.1039/c8cs00814k 5. Li X, Tao L, Chen Z, Fang H, Li X, Wang X, Xu J-B, Zhu H (2017) Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl Phys Rev 4:021306. 10.1063/1.4983646 DOI: 10.1063/1.4983646 6. Thanh TD, Chuong ND, Hien HV, Kshetri T, Tuan LH, Kim NH, Lee JH (2018) Recent advances in two-dimensional transition metal dichalcogenides-graphene heterostructured materials for electrochemical applications. Prog Mat Sci 96:51–85. 10.1016/j.pmatsci.2018.03.007 DOI: 10.1016/j.pmatsci.2018.03.007 7. Miwa JA, Dendzik M, Grønborg SS, Bianchi M, Lauritsen JV, Hofmann P, Ulstrup S (2015) Van der Waals epitaxy of two-dimensional MoS2/graphene heterostructures in a ultra-high vacuum. ACS Nano 9:6502–6510. 10.1021/acsnano.5b02345 DOI: 10.1021/acsnano.5b02345 8. Woods JM, Jung Y, Xie YJ, Liu W, Liu Y, Wang H, Cha JJ (2016) One-step synthesis of MoS2/WS2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films. ACS Nano 10:2004–2009. 10.1021/acsnano.5b06126 DOI: 10.1021/acsnano.5b06126 9. Zhang C, Li C, Yu J, Jiang S, Xu S, Yang C, Liu YJ, Gao X, Liu A, Man B (2018) SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sens Actuat B Chem 258:163–171. 10.1016/j.snb.2017.11.080 DOI: 10.1016/j.snb.2017.11.080 10. Lewin M, Hauer B, Bornhöfft M, Jung L, Benke J, Michel A-KU, Mayer J, Wuttig M, Taubner T (2015) Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy. Appl Phys Lett 107:151902. 10.1063/1.4933102 DOI: 10.1063/1.4933102 11. Tian W, Yu W, Shi J, Wang Y (2017) The property, preparation and application of topological insulators: a review. Materials 10:814. 10.3390/ma10070814 DOI: 10.3390/ma10070814 12. Khokhriakov D, Cummings AW, Song K et al (2018) Tailoring emergent spin phenomena in Dirac material heterostructures. Sci Adv 4:eaat9349. 10.1126/sciadv.aat9349 DOI: 10.1126/sciadv.aat9349 13. Qu D, Hor Y, Xiong J et al (2010) Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3. Science 329:821–824. 10.1126/science.1189792 DOI: 10.1126/science.1189792 14. Chiatti O, Riha C, Lawrenz D et al (2016) 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes. Sci Rep 6:27483. 10.1038/srep27483 DOI: 10.1038/srep27483 15. He L, Xiu F, Yu X et al (2012) Surface-dominated conduction in a 6 nm thick Bi2Se3 thin film. Nano Lett 12:1486–1490. 10.1021/nl204234j DOI: 10.1021/nl204234j 16. Song K, Soriano D, Cummings AW et al (2018) Spin proximity effects in graphene/topological insulator heterostructures. Nano Lett 18:2033–2039. 10.1021/acs.nanolett.7b05482 DOI: 10.1021/acs.nanolett.7b05482 17. Zhang L, Yan Y, Wu H-C et al (2016) Gate-tunable tunneling resistance in graphene/topological insulator vertical junctions. ACS Nano 10:3816–3822. 10.1021/acsnano.6b00659 DOI: 10.1021/acsnano.6b00659 18. Cao W, Zhang R-X, Tang P, et al (2016) Heavy Dirac fermions in a graphene/topological insulator hetero-junction. 2D Mater 3:034006. 10.1088/2053-1583/3/3/034006 19. Qiao H, Yuan J, Xu Z et al (2015) Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ACS Nano 9:1886–1894. 10.1021/nn506920z DOI: 10.1021/nn506920z 20. Vaklinova K, Hoyer A, Burghard M, Kern K (2016) Current-induced spin polarization in topological insulator-graphene heterostructures. Nano Lett 16:2595–2602. 10.1021/acs.nanolett.6b00167 DOI: 10.1021/acs.nanolett.6b00167 21. Kim N, Lee P, Kim Y et al (2014) Persistent topological surface state at the interface of Bi2Se3 film grown on patterned graphene. ACS Nano 8:1154–1160. 10.1021/nn405503k DOI: 10.1021/nn405503k 22. Lin Y, Dimitrakopoulos C, Farmer D et al (2010) Multicarrier transport in epitaxial multilayer graphene. Appl Phys Lett 97:112107. 10.1063/1.3485671 DOI: 10.1063/1.3485671 23. Steinberg H, Gardner D, Lee Y, Jarillo-Herrero P (2010) Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano Lett 10:5032–5036. 10.1021/nl1032183 DOI: 10.1021/nl1032183 24. Ren Z, Taskin A, Sasaki S et al (2010) Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys Rev B 82:241306. 10.1103/PhysRevB.82.241306 DOI: 10.1103/PhysRevB.82.241306 25. Lee P, Jin KH, Sung SJ et al (2015) Proximity effect induced electronic properties of graphene on Bi2Te2Se. ACS Nano 9:10861–10866. 10.1021/acsnano.5b03821 DOI: 10.1021/acsnano.5b03821 26. Liu G, Rumyantsev SL, Shur MS, Balandin AA (2013) Origin of 1/f noise in graphene multilayers: surface vs. volume. Appl Phys Lett 102:093111. 10.1063/1.4794843 27. Bøggild P, Mackenzie DMA, Whelan PR, et al (2017) Mapping the electrical properties of large-area graphene. 2D Mater 4:042003. 10.1088/2053-1583/aa8683 28. Cultrera A, Serazio D, Zurutuza A et al (2019) Mapping the conductivity of graphene with electrical resistance tomography. Sci Rep 9:10655. 10.1038/s41598-019-46713-8 DOI: 10.1038/s41598-019-46713-8 29. Peng HL, Dang WH, Cao J et al (2012) Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat Chem 4:281–286. 10.1038/nchem.1277 DOI: 10.1038/nchem.1277 30. Min Y, Moon GD, Kim BS et al (2012) Quick, controlled synthesis of ultrathin Bi2Se3 nanodiscs and nanosheets. J Am Chem Soc 134:2872–2875. 10.1021/ja209991z DOI: 10.1021/ja209991z 31. Hong SS, Kundhikanjana W, Cha JJ et al (2010) Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. Nano Lett 10:3118–3122. 10.1021/nl101884h DOI: 10.1021/nl101884h 32. Zhang J, Peng ZP, Soni A et al (2011) Raman spectroscopy of few quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett 11:2407–2414. 10.1021/nl200773n DOI: 10.1021/nl200773n 33. Ryu S, Maultzsch J, Han MY et al (2011) Raman spectroscopy of lithographically patterned graphene nanoribbons. ACS Nano 5:4123–4130. 10.1021/nn200799y DOI: 10.1021/nn200799y 34. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon Phys. Rev B 61:14095. 10.1103/PhysRevB.61.14095 DOI: 10.1103/PhysRevB.61.14095 35. Antonova IV, Nebogatikova NA, Kokh KA et al (2020) Electrochemically exfoliated thin Bi2Se3 films and van der Waals heterostructures Bi2Se3/graphene. Nanotechnology 31:125602. 10.1088/1361-6528/ab5cd5 DOI: 10.1088/1361-6528/ab5cd5 36. Piazza A, Giannazzo F, Buscarino G, Fisichella G, La Magna A, Roccaforte F, Cannas M, Gelardi FM, Agnello S (2015) Graphene p-type doping and stability by thermal treatments in molecular oxygen controlled atmosphere. J Phys Chem C 119:22718–22723. 10.1021/acs.jpcc.5b07301 DOI: 10.1021/acs.jpcc.5b07301 37. Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem 21:3335–3345. 10.1039/C0JM02922J DOI: 10.1039/C0JM02922J 38. Xue L, Zhou P, Zhang CX, He CY, Hao GL, Sun LZ, Zhong JX (2013) First-principles study of native point defects in Bi2Se3. AIP Adv 3:052105. 10.1063/1.4804439 DOI: 10.1063/1.4804439 39. Chae J, Kang S-H, Park SH et al (2019) Closing the surface bandgap in thin Bi2Se3/graphene heterostructures. ACS Nano 13:3931–3939. 10.1021/acsnano.8b07012 DOI: 10.1021/acsnano.8b07012 40. Grassi R, Low T, Gnudi A, Baccarani G (2013) Contact-induced negative differential resistance in short-channel graphene FETs IEEE Trans. Electron Devices 60:140–146. 10.1109/TED.2012.2228868 DOI: 10.1109/TED.2012.2228868 41. Tran PX (2018) Modulation of negative differential resistance in graphene field-effect transistors by tuning the contact resistances. J Electron Mater 47:5905–5912. 10.1007/s11664-018-6480-6 DOI: 10.1007/s11664-018-6480-6 42. Sacépé B, Oostinga JB, Li J et al (2011) Gate-tuned normal and superconducting transport at the surface of a topological insulator. Nat Commun 2:575. 10.1038/ncomms1586 DOI: 10.1038/ncomms1586 43. Wang S, Li Y, Ng A, Hu Q, Zhou Q, Li X, Liu H (2020) 2D Bi2Se3 van der Waals epitaxy on mica for optoelectronics applications. Nanomaterials 10:1653. 10.3390/nano10091653 DOI: 10.3390/nano10091653 44. Li HD, Wang ZY, Kan X, Guo X, He HT, Wang Z, Wang JN, Wong TL, Wang N, Xie MH (2010) The van der Waals epitaxy of Bi2Se3 on the vicinal Si(111) surface: an approach for preparing high-quality thin films of a topological insulator. New J Phys 12:103038. 10.1088/1367-2630/12/10/103038 DOI: 10.1088/1367-2630/12/10/103038 45. Kamboj VS, Singha A, Ferrusb T, Beerea HE, Duffyc LB, Hesjedalc T, Barnesa CHW, Ritchie DA (2017) Probing the topological surface state in Bi2Se3 thin films using temperature-dependent terahertz spectroscopy. ACS Photonics 4:2711–2718. 10.1021/acsphotonics.7b00492 DOI: 10.1021/acsphotonics.7b00492 46. Brahlek M, Kim YS, Bansal N, Edrey E, Oh S (2011) Surface versus bulk state in topological insulator Bi2Se3 under environmental disorder. Appl Phys Lett 99:012109. 10.1063/1.3607484 DOI: 10.1063/1.3607484 47. Bianchi M, Guan D, Bao S et al (2010) Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi2Se3. Nat Commun 1:128. 10.1038/ncomms1131 DOI: 10.1038/ncomms1131 48. Zhang L, Lin B-C, Wu Y-F et al (2017) Electronic coupling between graphene and topological insulator induced anomalous magnetotransport properties. ACS Nano 11:6277–6285. 10.1021/acsnano.7b02494 DOI: 10.1021/acsnano.7b02494 49. Dang W, Peng H, Li H et al (2010) Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett 10:2870–2876. 10.1021/nl100938e DOI: 10.1021/nl100938e 50. Zhang C, Liu M, Man BY et al (2014) Facile fabrication of graphene-topological insulator Bi2Se3 hybrid Dirac materials via chemical vapor deposition in Se-rich conditions. Cryst Eng Commun 16:8941–8945. 10.1039/C4CE01269K DOI: 10.1039/C4CE01269K 51. Suna Z, Mana B, Yanga C et al (2016) Selenium-assisted controlled growth of graphene–Bi2Se3 nanoplates hybrid Dirac materials by chemical vapor deposition. Appl Surf Sci 365:357–363. 10.1016/j.apsusc.2015.12.212 DOI: 10.1016/j.apsusc.2015.12.212