Инд. авторы: Kaneva E., Radomskaya T., Shendrik R., Chubarov V., Danilovsky V.
Заглавие: Potassic-Hastingsite from the Kedrovy District (East Siberia, Russia): Petrographic Description, Crystal Chemistry, Spectroscopy, and Thermal Behavior
Библ. ссылка: Kaneva E., Radomskaya T., Shendrik R., Chubarov V., Danilovsky V. Potassic-Hastingsite from the Kedrovy District (East Siberia, Russia): Petrographic Description, Crystal Chemistry, Spectroscopy, and Thermal Behavior // MINERALS. - 2021. - Vol.11. - Iss. 10. - Art.1049.
Внешние системы: DOI: 10.3390/min11101049; РИНЦ: 47105167; WoS: 000712681600001;
Реферат: eng: In this work we report on a petrographic, crystal-chemical, and optical characterization, obtained from different analytical methods, of amphibole species. Potassic-hastingsite, ideally (KCa2)-K-A-Ca-B(C)(Fe42+Fe3+)(T)(Si6Al2)O-22(W)(OH)(2), has been found in the Kedrovy district (East Siberia, Russia). The sample occurs as well-formed and large radially radiant aggregates of dark green, almost black crystals. The unit cell dimensions are a = 9.9724(3) & ANGS;, b = 18.2968(4) & ANGS;, c = 5.3573(1) & ANGS;, beta = 104.945(3)& DEG;, V = 944.44(4) & ANGS;(3), Z = 2. Site populations were determined by combining single-crystal structure refinement and electron probe microanalysis, and Fe3+/Fe2+ ratio was obtained from X-ray fluorescence analysis. Infrared, diffuse light UV/Vis/NIR absorption, and electron spin resonance spectra are presented and discussed. A thermoelastic behavior of a powder of potassic-hastingsite was studied by in situ high-temperature X-ray diffraction. A thermal expansion and subsequent significant contraction in the unit cell volume during a high-temperature X-ray powder diffraction experiment is observed as a consequence of the deprotonation process, which is locally balanced via oxidation of Fe2+. According to the data obtained for potassic-hastingsite, these processes occur within 400-600 & DEG;C. The thermal expansion of the mineral is anisotropic; the thermal expansivity coefficients alpha(a):alpha(b):alpha(c) (x10(-6)) = -18.06:9.59:-1.09 at 400 & DEG;C, -26.15:-1.52:2.22 at 600 & DEG;C and 23.77:-25.06:42.08 at 750 & DEG;C.


Ключевые слова: CHLORINE; DEPROTONATION; AMPHIBOLES; SKARN; FE OXIDATION; ABSORPTION-SPECTRA; MAGNESIO-HASTINGSITE; BOND-VALENCE PARAMETERS; thermal behavior; absorption spectroscopy; electron spin resonance; IR spectroscopy; crystal chemistry; mineral associations; petrography; amphiboles; potassic-hastingsite; HIGH-TEMPERATURE BEHAVIOR; POTASSICHASTINGSITE;
Издано: 2021
Физ. характеристика: 1049
Цитирование: 1. Hawthorne, F.C.; Oberti, R. Classification of the amphiboles. Rev. Min. Geochem. 2007, 67, 55–88, doi:10.2138/rmg.2007.67.2. 2. Leake, B.E.; Woolley, A.R.; Arps, C.E.S.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; et al. Nomenclature of amphiboles: Report of the Subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Min. Mag. 1997, 61, 295–321, doi:10.1180/minmag.1997.061.405.13. 3. Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Min. 2012, 97, 2031–2048, http://dx.doi.org/10.2138/am.2012.4276. 4. Adams, F.D.; Harrington, B.J. On a new alkali hornblende and a titaniferous andradite from the nepheline-syenite of Dungannon, Hastings County, Ontario. Am. J. Sci. 1896, 151, 210–218. 5. Makino, K.; Tomita, K. Cation distribution in the octahedral sites of hornblendes. Am. Min. 1989, 74, 1097–1105. 6. Makino, K.; Tomota, K.; Suwa, K. Effect of chlorine on the crystal structure of a chlorine-rich hastingsite. Min. Mag. 1993, 57, 677–685, doi:10.1180/minmag.1993.057.389.12. 7. Dick, L.A.; Robinson, G.W. Chlorine-bearing potassian hastingsite from a sphalerite skarn in southern Yukon. Can. Min. 1979, 17, 25–26. 8. Suwa, K.; Enami, M.; Horiuchi, T. Chlorine-rich potassium hastingsite from West Ongul Island, Lutzow-Holm Bay, East Antarctica. Min. Mag. 1987, 51, 709–714. 9. Žáček, V. Potassium hastingsite and potassichhastingsite from garnet—hedenbergite skarn at Vlastějovice, Czech Republic. N. Jb. Miner. Abh. 2007, 184, 161–168, doi:10.1127/0077-7757/2007/0089. 10. Ren, G.; Li, G.; Shi, J.; Gu, X.; Fan, G.; Yu, A.; Liu, Q.; Shen, G. Potassic-hastingsite, KCa2(Fe2+4Fe3+)(Si6Al6)O22(OH)2, from the Keshiketeng Banner, Inner Mongolia, China: Description of the neotype and its implication. Mineral. Petrol. 2020, 114, 403–412, https://doi.org/10.1007/s00710-020-00717-9. 11. Lupulescu, M.V.; Rakovan, J.; Dyar, M.D.; Robinson, G.W.; Hughes, J.M. Fluoro-potassichastingsite from the Greenwood mine, Orange county, New York: A new end-member calcic amphibole. Can. Min. 2009, 47, 909–916, doi:10.3749/canmin.47.3.909. 12. Krutov, G.A. Dashkesanite—a new chlorine-containing amphibole of the hastingsite group. Izvest. AN USSR Geol. Series 1936, 2–3, 341–373 (In Russian) 13. Pekov, I.V.; Chukanov, N.V.; Nefedova, M.E.; Pushcharovsky, D.Y.; Rastsvetaeva, R.K. Chloro-potassichastingsite (K,Na)Ca2(Mg,Fe2+)4Fe3+[Si6Al2O22](OH,Cl)2: Revalidation and the new name of dashkesanite. Zapiski RMO 2005, 6, 31– 36 (In Russian) 14. Billings, M. The chemistry, optics and genesis of the hastingsite group of amphiboles. Am. Min. 1928, 13, 287–296. 15. Walitzi, E.M.; Walter, F. Verfeinerung der keistallstruktur eines basaltischen magnesio-hastingsites. Z. für Kristallogr. 1981, 156, 197–208 (In German). 16. Martin, R.F.; Alarie, É.; Minarik, W.G.; Wáczek, Z.; McCammon, C.A. Titanium-rich magnesio-hastingsite macrocrysts in a camptonite dike, Lafarge quarry, Montreal island, Québec: Early crystallization in a pseudo-unary system. Can. Min. 2016, 54, 65–78, doi:10.3749/canmin.4359. 17. Shiraishi, K.; Oba, T.; Suzuki, M.; Ishikawa, K. Subsilic magnesian potassium-hastingsite from the Prince Olav Coast, East Antarctica. Min. Mag. 1994, 58, 621–627. 18. Korinevsky, V.G.; Korinevsky, E.V. Potassic-magnesiohastingsite (K,Na)Ca2(Mg,Fe2+)4(Fe3+,Al,Ti)[Si6Al2O22](OH,Cl)2— the new mineral species of amphiboles. Zapiski RMO 2006, 2, 49–57. (In Russian) 19. Bojar, H.-P.; Walter, F. Fluoro-magnesiohastingsite from Dealul Uroi (Hunedoara county, Romania): Mineral data and crystal structure of a new amphibole end-member. Eur. J. Mineral. 2006, 18, 503–508, doi:10.1127/0935-1221/2006/00180503. 20. Aksenov, S.; Chukanov, N.V. The crystal structure of a fluorine-dominant titanium calcium amphibole from the Eifel paleovolcanic area, Germany. Z. für Kristallogr. 2016, 231, 385–390, doi:10.1515/zkri-2016-1932. 21. Zaitsev, A.N.; Avdontseva, E.Y.; Britvin, S.N.; Demény, A.; Homonnay, Z.; Jeffries, T.E.; Keller, J.; Krivovichev, V.G.; Markl, G.; Platonova, N.V.; et al. Oxo-magnesio-hastingsite, NaCa2(Mg2Fe3+3)(Al2Si6)O22O2, a new anhydrous amphibole from the Deeti volcanic cone, Gewgory rift, northern Tanzania. Min. Mag. 2013, 77, 2773–2792, doi:10.1180/minmag.2013.077.6.06. 22. Oberti, R.; Zema, M.; Boiocchi, M.; Tarantino, S.; Welch, M.D. HT-induced processes in monoclinic and orthorhombic amphiboles and their effects on thermodynamic models. Geophys. Res. Abstr. EGU2011, 2011, 13, 11183. 23. Tribaudino, M.; Hovis, G.L.; Almer, C.; Leaman, A. Thermal expansion of minerals in the amphibole supergroup. Am. Min. 2022, In press, doi:10.2138/am-2022-7988. 24. Drugov, G.M.; Sizykh, A.I.; Bulanov, V.A. Geological models of mica-bearing junction of the Slyudanskaya and Sogdioddonskaya groups of deposits in the Mamsk province. Bull. Irkutsk State Univ. Series: Earth Sci. 2015, 13, 58–77. 25. Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Min. 2010, 95, 185–187, doi:10.2138/am.2010.3371. 26. Verkaeren, J. Les grenats biréfringents des skarns à magnétite de San Leone (Sardaigne SW). Bull. Soc. Franc. Mineral. Cristallogr. 1971, 94, 492–499. (In French) 27. Lessing, P.; Standish, R.P. Zoned garnet from Crested Butte, Colorado. Am. Min. 1973, 58, 840–842. 28. Takeuchi, Y.; Haga, N. Optical anomaly and structure of silicate garnets. Proc. Jpn. Acad. 1976, 52, 228–231. 29. Yang, S.-Y.; Zhang, R.-X.; Jiang, S.-Y.; Xie, J. Electron probe microanalysis of variable oxidation state oxides: Protocol and pitfalls. Geostand. Geoanalytical Res. 2018, 42, 131–137, doi:10.1111/ggr.12199. 30. Finkelshtein, A.L.; Chubarov, V.M. X-ray fluorescence determination of FeO/Fe2O3tot ratio in igneous rocks. X-ray Spectrom. 2010, 39, 17–21, doi:10.1002/xrs.1224. 31. Chubarov, V.M.; Finkelshtein, A.L. Determination of divalent iron content in igneous rocks of ultrabasic, basic and intermediate compositions by a wavelength-dispersive X-ray fluorescence spectrometric method. Spectrochim. Acta B 2015, 107, 110–114, doi:10.1016/j.sab.2015.03.007. 32. Chubarov, V.M.; Amosova, A.A.; Finkelshtein, A.L. Determination of iron and sulfur valence state in coal ashes by wavelength-dispersive X-ray fluorescence spectrometric technique. Spectrochim. Acta B 2020, 163, 105745, https://doi.org/10.1016/j.sab.2019.105745. 33. Chubarov, V.M.; Finkelshtein, A.L.; Suvorova, L.F.; Kostrovitsky, S.I. Determination of iron valence state in picroilmenites by electron probe microanalysis and x-ray fluorescence analysis. Zapiski RMO. 2012, 141, 83–91. (In Russian) 34. Bruker APEX2. Version 2014.11-0; Bruker AXS Inc.: Madison, WI, USA, 2014. 35. CrysAlis, PRO.; Version 1.171.35.21; Agilent Technologies Ltd.: Yarnton, UK, 2018. 36. Betteridge, P.W.; Carruthers, J.R.; Cooper, R.I.; Prout, K.; Watkin, D.J. Crystals version 12: Software for guided crystal structure analysis. J. App. Cryst. 2003, 36, 1487, doi:10.1107/S0021889803021800. 37. Oberti, R.; Hawthorne, F.C.; Cannillo, E.; Cámara, F. long-range order in amphiboles. Rev. Min. Geochem. 2007, 67, 125– 171, doi:10.2138/rmg.2007.67.4. 38. Hawthorne, F.; Oberti, R. Amphiboles: Crystal structure. Rev. Min. Geochem. 2007, 67, 1–54, doi:10.2138/rmg.2007.67.1. 39. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276, https://doi.org/10.1107/S0021889811038970. 40. Bruker: Topas V4. General Profile and Structure Analysis Software For Powder Diffraction Data; Bruker AXS Inc.: Karlsruhe, Germany, 2008. 41. Langreiter, T.; Kahlenberg, V. TEV—A program for the determination of the thermal expansion tensor from diffraction data. Crystals 2015, 5, 143–153, doi:10.3390/cryst5010143. 42. Locock, A.J. An Exel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput. Geosci. 2014, 62, 1–11, https://doi.org/10.1016/j.cageo.2013.09.011. 43. Robinson, K.; Gibbs, G.V.; Ribbe, P.H. Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science 1971, 172, 567–570. 44. Renner, B.; Lehmann, G. Correlation of angular and bond length distortions in TO4 units in crystals. Z. Kristallogr. 1986, 175, 43–59, doi:10.1524/zkri.1986.175.14.43. 45. Gagnè, O.C.; Hawthorne, F.C. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Cryst. 2015, B71, 562–578, doi:10.1107/S2052520615016297. 46. Breese, N.E.; O’Keeffe, M. Bond-valence parameters for solid. Acta Cryst. 1991, B47, 192–197, https://doi.org/10.1107/S0108768190011041. 47. Oberti, R.; Ungaretti, L.; Cannillo, E.; Hawthorne, F. The mechanism of Cl incorporation in amphibole. Am. Min. 1993, 78, 746–752. 48. Oberti, R.; Ungaretti, L.; Cannillo, E.; Hawthorne, F.; Memmi, I. Temperature-dependent Al order-disorder in the tetrahedral double chain of C2/m amphiboles. Eur. J. Mineral. 1995, 7, 1049–1063. 49. Oberti, R.; Boiocchi, M.; Zema, M. Thermoelasticity, cation exchange, and deprotonation in Fe-rich holmquistite: Toward a crystal-chemical model for the high-temperature behavior of orthorhombic amphiboles. Am. Min. 2019, 104, 1829–1839, doi:10.2138/am-2019-6966. 50. Oberti, R.; Boiocchi, M.; Zema, M.; Hawthorne, F.; Redhammer, G.; Susta, U.; Della Ventura, G. The high-temperature behavior of riebeckite: Expansivity, deprotonation, selective Fe oxidation and a novel cation disordering scheme for amphiboles. Eur. J. Mineral. 2018, 30, 437–449, doi:10.1127/ejm/2018/0030-2712. 51. Della Ventura, G.; Mihailova, B.; Susta, U.; Castelli Guidi, M.; Marcelli, A.; Schlüter, J.; Oberti, R. The dynamics of Fe oxidation in riebeckite: A model for amphiboles. Am. Min. 2018, 103, 1103–1111 doi:10.2138/am-2018-6382. 52. Oberti, R.; Boiocchi, M.; Zema, M.; Della Ventura, G. Synthetic potassic-ferro-richterite: 1. Composition, crystal structure refinement, and HT behavior by in operando single-crystal X-ray diffraction. Can. Min. 2016, 54, 353–369, doi:10.3749/canmin.1500073. 53. Della Ventura, G.; Susta, U.; Bellatreccia, F.; Marcelli, A.; Redhammer, G.; Oberti, R. Deprotonation of Fe-domonant amphiboles: Single-crystal HT-FTIR spectroscopic studies of synthetic potassic-ferro-richterite. Am. Min. 2017, 102, 117–125, doi:10.2138/am-2017-5859. 54. Iezzi, G.; Della Ventura, G.; Hawthorne, F.C.; Pedrazzi, G.; Robert, J.L.; Novembre, D. The (Mg,Fe2+) substitution in ferri-clinoholmquistite, □ Li2(Mg,Fe2+)3Fe3+2O22(OH)2. Eur. J. Mineral. 2005, 17, 733–740, doi:10.1127/0935 1221/2005/0017-0733. 55. Ishida, K. Assignment of infrared OH-stretching bands in calcic amphiboles through deuteration and heat treatment. Am. Min. 2006, 91, 871–879, doi:10.2138/am.2006.1774. 56. Burns, R.G.; Strens, R.G.J. Infrared study of the hydroxyl bonds in clinoamphiboles. Science 1966, 153, 890–892, doi:10.1126/science.153.3738.890. 57. Della Ventura, G. Recent developments in the synthesis and characterization of amphiboles. Synthesis and crystal chemistry of richterite. Trends Mineral. 1992, 1, 153–192. 58. Ishida, K. Identification of infrared OH librational bands of talc-willemseite solid solutions and Al (IV)-free amphiboles through deuteration. Mineral. J. 1990, 15, 93–104, doi:10.2465/MINERJ.15.93. 59. Sergeeva, A.V.; Zhitova, E.S.; Nuzhdaev, A.A.; Zolotarev, A.A.; Bocharov, V.N.; Ismagilova, R.M. Infrared and Raman spectroscopy of ammoniovoltaite, (NH4)2Fe2+5Fe3+3Al(SO4)12(H2O)18. Minerals 2020, 10, 781, https://doi.org/10.3390/min10090781. 60. Bogdanov, A.; Kaneva, E.; Shendrik, R. New insights into the crystal chemistry of elpidite, Na2Zr[Si6O15]·3H2O and (Na1+yCax□1−x−y)Σ=2Zr[Si6O15]·(3−x)H2O, and ab initio modeling of IR spectra. Materials 2021, 14, 2160, doi:10.3390/ma14092160. 61. Omori, K. Analysis of the infrared absorption spectrum of diopside. Am. Min. 1971, 56, 1607–1616. 62. Burns, R.G. Mineralogical Application of Crystal Field Theory; Cambridge University Press: Cambridge, UK, 1993, doi:10.1017/CBO9780511524899. 63. Goldman, D.S.; Rossman, G.R.; Dollase, W.A. Channel constituents in cordierite. Am. Min. 1977, 62, 1144–1157. 64. Taran, M.N.; Langer, K. Electronic absorption spectra of Fe2+ ions in oxygen-based rock-forming minerals at temperatures between 297 and 600 K. Phys. Chem. Min. 2001, 28, 199–210, doi:10.1007/S002690000148. 65. Fontana, I.; Lauria, A.; Spinolo, G. Optical absorption spectra of Fe2+ and Fe3+ in aqueous solutions and hydrated crystals. Phys. Status Solidi B. 2007, 244, 4669–4677, doi:10.1002/pssb.200743103. 66. Abragam, A.; Bleaney, B. Electron Paramagnetic Resonance of Transition Ions; Oxford University Press: Oxford, UK, 2012. 67. Shongwe, M.S.; Al-Rahbi, S.H.; Al-Azani, M.A.; Al-Muharbi, A.A.; Al-Mjeni, F.; Matoga, D.; Gismelseed, A.; Al-Omari, I.; Yousif, A.; Adams, H.; et al. Coordination versatility of tridentate pyridyl aroylhydrazones towards iron: Tracking down the elusive aroylhydrazono-based ferric spin-crossover molecular materials. Dalton Trans. 2012, 41, 2500, doi:10.1039/c1dt11407g. 68. Skogby, H.; Rossman, G.R. OH in pyroxene; an experimental study of incorporation mechanisms and stability. Am. Min. 1989, 74, 1059–1069. 69. Burt, D.M. Metasomatic zoning in Ca-Fe-Si exoskarns. In Geochemical Transport And Kinetics; Hofmann A.W., Giletti, H.S., Yoder, H.S., Jr., Yund, R.A., Eds.; Washington, Carnegie Institution of Washington: Washington, DC, USA, 1974; Volume 634, pp. 287–293. 70. Pertsev, N.N. Skarns as magmatic and as postmagmatic formations. Intern. Geol. Rev. 1974, 16, 572–582. 71. Burt, D.M. Mineralogy and petrology of skarn deposits: Soc. Ital. Mineral. Petrol. Rendiconti 1977, 33, 859–873. 72. Meinert, L.D.; Dipple, G.M.; Nicolescu, S. World skarn deposits. Econ. Geol. 2005, 100, 299–336, doi:10.5382/AV100.11. 73. Einaudi, M.T.; Burt, D.M. Introduction; terminology, classification, and composition of skarn deposits. Econ. Geol. 1982, 77, 745–754. 74. Meinert, L.D. Skarns and Skarn Deposits. Geosci. Can. 1992, 19, 145–162. 75. Alaminia, Z.; Mehrabi, B.; Razavi, S.M.H.; Tecce, F. 2020. Mineral chemistry, petrogenesis and evolution of the Ghorveh-Seranjic skarn, Northern Sanandaj Sirjan Zone, Iran. Mineral. Petrol. 2020, 114, 15–38, https://doi.org/10.1007/s00710-019-00688-6.