Инд. авторы: Rakhimov I.R., Vishnevskiy A.V., Saveliev D.E.
Заглавие: Geochemical evolution of PGE-sulfide mineralization of the Khudolaz differentiated complex in the South urals: The role of R-factor and hydrothermal alteration
Библ. ссылка: Rakhimov I.R., Vishnevskiy A.V., Saveliev D.E. Geochemical evolution of PGE-sulfide mineralization of the Khudolaz differentiated complex in the South urals: The role of R-factor and hydrothermal alteration // Ore Geology Reviews. - 2021. - Vol.138. - Art.104411. - ISSN 0169-1368.
Внешние системы: DOI: 10.1016/j.oregeorev.2021.104411; РИНЦ: 47016984; РИНЦ: 47016984; WoS: 000709304000001;
Реферат: eng: The article highlights the results of mineralogical and geochemical studies of disseminated Cu-Ni-PGE sulfide mineralization from three intrusions of the Khudolaz Differentiated Complex (KDC) in the South Urals. Sulfide mineral assemblages are shown to have formed across a wide temperature range (about 1100-150 degrees C) during the cooling of an immiscible sulfide melt and subsequent hydrothermal dissolution and redeposition of sulfides. During the solidification process, a crystallization of sulfide solid solutions (mss, iss, etc.) occurred, from which pyrrhotite, pentlandite, and chalcopyrite were subsequently exsoluted. The oxidation, substitution and dissolution of primary sulfides at the hydrothermal stage led to the formation of mineral aggregates of complex morphology, containing complete or partial pseudomorphs of secondary sulfides, silicates and oxides, as well as redeposited sulfide aggregates. According to LA ICP MS data for sulfides and the bulk trace element composition of ores, the depletion of sulfide minerals by some chalcophile and platinum-group elements (PGE) took place during their hydrothermal alteration (partial dissolution and replacement). Secondary sulfides such as pyrite and violarite largely inherited the geochemical features of the primary minerals during pseudomorphic replacement of pyrrhotite and pentlandite. The redeposited sulfides (pyrite and chalcopyrite) are primarily enriched by chalcophile trace elements. Leaching of PGEs from pyrrhotite and pentlandite took place during hydrothermal alteration. Here, the most significant loss was determined for Te, resulting in the depletion of sulfide minerals and ores in Te by about 5 times. The identified decrease of Te/Sb values in altered sulfides by a factor of 3-20 indicates an enrichment in Sb and a high D-hydrothermal fluid/sulfide partition coefficient (>> 1). It is shown that the hydrothermal fluid was enriched in Sb. On the other hand, the S/Se value increases by a factor of similar to 1.5, demonstrating an Se mobility during metasomatic processes comparable to other chalcogenides. Based on the study of assemblages and traced evolution of the chemical composition of PGE minerals, three stages of mineralization are proposed: 1) crystallization of immiscible chalcogenide and highly fractionated sulfide melts; 2) segregation of isomorphic impurities of chalcogenides and PGE during the sulfides exsolution from sulfide solid solutions; 3) interaction of Pd leached from primary sulfide and PGE minerals with Sb-rich hydrothermal fluid. The calculated value of the R-factor (150-502) indicates a moderate productivity of the KDC intrusions for Cu-Ni sulfide mineralization, but a rather low potential for PGE. Although the degree of primary sulfide melt PGE-enrichment is not inferior to that of many Cu-Ni-PGE deposits in the world, the economic potential of the Khudolaz Complex intrusions is significantly reduced by their small sizes. At the same time, the strong depletion of primary sulfides in Ni, Cu, Pd, and Pt during hydrothermal alteration led to the enrichment of host rocks in the external contact.
Ключевые слова: SILICATE MELTS; KOLA-PENINSULA; PHASE-RELATIONS; CHALCOPHILE ELEMENTS; GROUP MINERALS; ORE-FORMING PROCESSES; MONOSULFIDE-SOLID-SOLUTION; PLATINUM-GROUP ELEMENTS; Secondary PGM; Khudolaz Complex; Hydrothermal alteration; Magmatic sulfide-PGE mineralization; NI-CU DEPOSIT; HOST ROCKS;
Издано: 2021
Физ. характеристика: 104411
Цитирование: 1. Andreev, A.V., The strike-slip and pull-apart sedimentary basin in paleozoides of the Eastern slope of the Southern Urals. Doklady Earth Sciences. 375:1 (2000), 1229–1232. 2. Ariskin, A.A., Frenkel, M.Y., Barmina, G.S., Nielsen, R.L., COMAGMAT: a Fortran program to model magma differentiation processes. Computers and Geosciences. 19:8 (1993), 1155–1170, 10.1016/0098-3004(93)90020-6. 3. Ariskin, A.A., Bychkov, K.A., Nikolaev, G.S., Barmina, G.S., The COMAGMAT-5: Modeling the Effect of Fe–Ni Sulfide Immiscibility in Crystallizing Magmas and Cumulates. Journal of Petrology. 59:2 (2018), 283–298, 10.1093/petrology/egy026. 4. Ariskin, A.A., Bychkov, K.A., Nikolaev, G.S., Modeling of trace-element composition of sulfide liquid in a crystallizing basalt magma: Development of the R-factor concept. Geochem. Int. 55:5 (2017), 465–473, 10.1134/S0016702917050032. 5. Ariskin, A.A., Danyushevsky, L.V., Fiorentini, M., Nikolaev, G.S., Kislov, E.V., Pshenitsyn, I.V., Yapaskurt, V.O., Sobolev, S.N., Petrology, Geochemistry, and the Origin of Sulfide-Bearing and PGE-mineralized Troctolites from the Konnikov Zone in the Yoko-Dovyren Layered Intrusion Russ. Geol. Geophys. 61:5–6 (2020), 611–633 https://doi.org/10.15372/RGG2019185. 6. Ariskin, A.A., Kislov, E.V., Danyushevsky, L.V., Nikolaev, G.S., Fiorentini, M.L., Gilbert, S., Goemann, K., Malyshev, A., Cu–Ni–PGE fertility of the Yoko-Dovyren layered massif (northern Transbaikalia, Russia): thermodynamic modeling of sulfide compositions in low mineralized dunite based on quantitative sulfide mineralogy. Mineralium Deposita. 51:8 (2016), 993–1011, 10.1007/s00126-016-0666-8. 7. Auge, T., Salpeteur, I., Bailly, L., Mukherjee, M.M., Patra, R.N., Magmatic and hydrothermal platinum-group minerals and base-metal sulfides in the Baula Complex. India. Canadian Mineralogist 40:2 (2002), 277–309, 10.2113/gscanmin.40.2.277. 8. Barnes, S.-J., Cruden, A.R., Arndt, N., Saumur, B.M., The mineral system approach applied to magmatic Ni–Cu–PGE sulphide deposits. Ore Geology Reviews. 76 (2016), 296–316, 10.1016/j.oregeorev.2015.06.012. 9. Wilhelmij, H.R., Cabri, L.J., Platinum mineralization in the Kapalagulu Intrusion, western Tanzania. Mineralium Deposita. 51 (2016), 343–367, 10.1007/s00126-015-0603-2. 10. Barnes, S.-J. and Lightfoot, P.C., 2005. Formation of magmatic nickel-sulfide ore deposits and processses affecting their copper and platinum-group element contents. In Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J. and Richards, J.P. (eds.) Economic Geology 100th Anniversary Volume, pp. 179–213. 11. Barnes, S.-J., Liu, W., Pt and Pd mobility in hydrothermal fluids: Evidence from komatiites and from thermodynamic modelling. Ore Geology Reviews. 44 (2012), 49–58, 10.1016/j.oregeorev.2011.08.004. 12. Barnes, S.-J., Maier, W.D., The fractionation of Ni, Cu and the noblemetals in silicate and sulfide liquids. Keays, R.R., Lesher, C.M., Lightfoot, P.C., Farrow, C.E.G., (eds.) Dynamic processes in magmaticore deposits and their application in mineral exploration, vol. 13.Geological, 1999, Association of Canada, Short Course Notes, 69–106. 13. Bekker, A., Grokhovskaya, T.L., Hiebert, R., Sharkov, E.V., Bui, T.H., Stadnek, K.R., Chashchin, V.V., Wing, B.A., Mineralium Multiple sulfur isotope and mineralogical constraints on the genesis of Ni-Cu-PGE magmatic sulfide mineralization of the Monchegorsk Igneous Complex, Kola Peninsula. Russia. Miner. Deposita 51:8 (2016), 1035–1053, 10.1007/s00126-015-0604-1. 14. Bezmen, N.I., Tikhomirova, V.I., Kosogova, V.P., Pyrite-pyrrhotite geothermometer: Partition of nickel and cobalt. Geochem. Intl. 12:3 (1975), 45–59. 15. Brovchenko, V.D., Sluzhenikin, S.F., Kovalchuk, E.V., Kovrigina, S.V., Abramova, V.D., Yudovskaya, M.A., Platinum Group Element Enrichment of Natural Quenched Sulfide Solid Solutions, the Norilsk 1 Deposit. Russia. Economic Geology. 115:6 (2020), 1343–1361, 10.5382/econgeo.4741. 16. Brown, D., Spadea, P., Puchkov, V., Alvarez-Marron, J., Herrington, R., Willner, A.P., Hetzel, R., Gorozhanina, Y., Juhlin, C., Arc–continent collision in the Southern Urals. Earth-Science Reviews. 79:3–4 (2006), 261–287, 10.1016/j.earscirev.2006.08.003. 17. Cafagna, F., Jugo, P.J., An experimental study on the geochemical behavior of highly siderophile elements (HSE) and metalloids (As, Se, Sb, Te, Bi) in a mss-iss-pyrite system at 650 °C: A possible magmatic origin for Co-HSE-bearing pyrite and the role of metalloid-rich phases in the fractionation of HSE. Geochimica et Cosmochimica Acta. 178:1 (2016), 233–258, 10.1016/j.gca.2015.12.035. 18. Cafagna, F., Jugo, P.J., 2014. Experimental study on the solubility of Te, Bi and As in sulfides and the exsolution of distinct metalloid phases. Conference: XII International Platinum Symposium At: Yekaterinburg (Russia), 228–229. 19. Campbell, I.H., Naldrett, A.J., The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides. Economic Geology 74:6 (1979), 1503–1506, 10.2113/gsecongeo.74.6.1503. 20. Chen, L.M., Song, X.Y., Danyushevsky, L.V., Wang, Y.S., Tian, Y.L., Xiao, J.F., A laser ablation ICP-MS study of platinum-group and chalcophile elements in base metal sulfide minerals of the Jinchuan Ni-Cu sulfide deposit. NW China. Ore Geology Reviews. 65 (2015), 955–967. 21. Chernyshov, N.M., Molotkov, S.P., Bukovshin, V.V., 2002. Mineral resource potential of endogenous platinum-copper-nickel and noble metal formations of the VCM (history of discovery and main stages of study, state and prospects of development). Proceedings of Voronezh State University. Series: Geology. no. 1, 164–182. (in Russian). 22. Dare, S.A.S., Barnes, S.-J., Prichard, H.M., The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite. Mineralium Deposita. 45:8 (2010), 765–793, 10.1007/s00126-010-0295-6. 23. Durazzo, A., Taylor, L.A., Exsolution in the mss-pentlandite system: Textural and genetic implications for Ni-sulfide ores. Mineralium Deposita. 17 (1982), 313–332, 10.1007/BF00204463. 24. Etschmann, B., Pring, A., Putnis, A., Grguric, B.A., Studer, A., A kinetic study of the exsolution of pentlandite (Ni, Fe)9S8 from the monosulfide solid solution (Fe, Ni)S. American Mineralogist. 89:1 (2004), 39–50, 10.2138/am-2004-0106. 25. Evans, H.T., Lunar troilite. Crystallography. Science 167 (1970), 621–623. 26. Fleet, M.E., Phase equilibria at high temperatures. Vaughan, D.J., (eds.) Sulfide Mineralogy and Geochemistry, 2006, MSA, Washington DC, USA, 365–419. 27. Garuti, G., Fiandri, P., Rossi, A., Sulfide composition and phase relations in the Fe-Ni-Cu ore deposits of the Ivrea-Verbano basic complex (western Alps, Italy). Mineralium Deposita. 21 (1986), 22–34. 28. Golovanova, I.V., Danukalov, K.N., Puchkov, V.N., Kosarev, A.M., Salmanova, R.Y., Paleomagnetic Study of Devonian and Carboniferous Rocks of the Southern Urals: An Independent Test of Collision between the Magnitogorsk Island Arc and the Passive Margin of the Continent of Laurussia. Dokl. Earth Sc. 482:1 (2018), 1134–1137, 10.1134/S1028334X18090052. 29. Helmy, H.M., Ballhaus, C., Fonseca, R.O.C., Leitzke, F.P., Concentrations of Pt, Pd, S, As, Se and Te in silicate melts at sulfide, arsenide, selenide and telluride saturation: evidence of PGE complexing in silicate melts?. Contrib. Mineral. Petrol., 175(65), 2020, 10.1007/s00410-020-01705-0. 30. Helmy, H.M., Ballhaus, C., Wohlgemuth-Ueberwasser, C., Fonseca, R.O.C., Laurenz, V., Partitioning of Se, As, Sb, Te and Bi between monosulfide solid solution and sulfide melt – application to magmatic sulfide deposits. Geochim Cosmochim Acta. 74 (2010), 6174–6179. 31. Helmy, H.M., Fonseca, R.O.C., The behavior of Pt, Pd, Cu and Ni in the Se-sulfide system between 1050 and 700 °C and the role of Se in platinum-group elements fractionation in sulfide melts. Geochimica et Cosmochimica Acta. 216:1 (2017), 141–152, 10.1016/j.gca.2017.05.010. 32. Holwell, D.A., Keays, R.R., McDonald, I., Williams, M.R., Extreme enrichment of Se, Te, PGE and Au in Cu sulfide microdroplets: evidence from LA-ICP-MS analysis of sulfides in the Skaergaard Intrusion, east Greenland. Contrib Mineral Petrol., 170(53), 2015, 10.1007/s00410-015-1203-y. 33. Holwell, D.A., McDonald, I., Distribution of platinum-group elements in the Platreef at Overysel, northern Bushveld Complex: a combined PGM and LA-ICP-MS study. Contributions to Mineralogy and Petrology. 154:2 (2007), 171–190, 10.1007/s00410-007-0185-9. 34. Holwell, D.A., Zeinab, A., Warda, L.A., Smith, D.J., Graham, S.D., McDonald, I., Smith, J.W., Low temperature alteration of magmatic Ni-Cu-PGE sulfides as a source for hydrothermal Ni and PGE ores: A quantitative approach using automated mineralogy. Ore Geology Reviews. 91 (2017), 718–740, 10.1016/j.oregeorev.2017.08.025. 35. Kamenetsky, V.S., Park, J.-W., Mungall, J.E., Pushkarev, E.V., Ivanov, A.V., Kamenetsky, M.B., Yaxley, G.M., 2015. Crystallization of platinum-group minerals from silicate melts: evidence from Cr-spinel-hosted inclusions in volcanic rocks. Geology. 43, 903–906. https://doi.org/10.1130/G37052.1. 36. Krivolutskaya, N., Tolstykh, N.D., Kedrovskaya, T., Naumov, K., Kubrakova, I., Tyutyunnik, O., Gongalsky, B., Kovalchuk, E., Magazina, L., Bychkova, Y., Yakushev, A., World-class PGE-Cu-Ni Talnakh deposit: New data on the structure and unique mineralization of the south-western branch. Minerals., 8. (4), 2018, Art. 124, 10.3390/min8040124. 37. Kullerud, G., Monoclinic pyrrhotite. Bulletin of Geological Society of Finland. 58:1 (1986), 293–305. 38. Lesher, C.M., Burnham, O.M., Multicomponent elemental and isotopic mixing in NiCu-(PGE) ores at Kambalda. Western Australia. Canadian Mineralogist. 39 (2001), 421–446. 39. Liu, Y., Brenan, J., Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled fO2–fS2 conditions. Geochimica et Cosmochimica Acta. 159 (2015), 139–161, 10.1016/j.gca.2015.03.021. 40. Lyubetskaya, T., Korenaga, J., Chemical composition of earth's primitive mantle and its variance. Journal of geophysical research. 112 (2007), 1–21, 10.1029/2005JB004224. 41. Mansur, E.T., Barnes, S.-J., Duran, C.J., An overview of chalcophile element contents of pyrrhotite, pentlandite, chalcopyrite, and pyrite from magmatic Ni-Cu-PGE sulfide deposits. Miner Deposita 56:1 (2020), 179–204, 10.1007/s00126-020-01014-3. 42. Mansur, E.T., Barnes, S.-J., Duran, C.J., Sluzhenikin, S.F., Distribution of chalcophile and platinum-group elements among pyrrhotite, pentlandite, chalcopyrite and cubanite from the Noril'sk-Talnakh ores: implications for the formation of platinum-group minerals. Mineralium Deposita 55:6 (2019), 1215–1232, 10.1007/s00126-019-00926-z. 43. Morimoto, N., Gyobu, A., Mukaiyama, H., Izawa, E., Crystallography and stability of pyrrhotites. Economic Geology. 70 (1975), 824–833. 44. Mungall, J.E., Crystallization of magmatic sulfides: an empirical model and application to Sudbury ores. Geochim. Cosmochim Acta. 71:11 (2007), 2809–2819, 10.1016/j.gca.2007.03.026. 45. Naldrett, A.J., Magmatic Sulphide Deposits: Geology Geochemistry and Exploration. 2004, Oxford University Press, New York, 728. 46. Naldrett, A.J., From the mantle to the bank: the life of a Ni-Cu-(PGE) sulfide deposit. South African Journal of geology. 113:1 (2010), 1–32. 47. Nakazawa, H., Morimoto, N., Pyrrhotite phase relations below 320 C. Proceedings of the Japan Academy. 46 (1970), 678–683. 48. Ortega, L., Lunar, R., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C., The Aguablanca Ni–Cu-PGE deposit, southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can Mineral. 42 (2004), 325–350. 49. Patten, C., Barnes, S.-J., Mathez, E.A., Jenner, F.E., Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chemical Geology. 358 (2013), 170–188, 10.1016/j.chemgeo.2013.08.040. 50. Piercey, S. Classic papers in Economic Geology: Campbell and Naldrett (1979) – The Influence of Silicate-Sulfide Ratios on the Geochemistry of Magmatic Sulfides, 2013. Online paper. Available from: https://stevepiercey.wordpress.com/2013/05/15/classic-papers-in-economic-geology-campbell-and-naldrett-1979-the-influence-of-silicate-sulfide-ratios-on-the-geochemistry-of-magmatic-sulfides/ (last accessed 17.06.2020). 51. Prichard, H.M., Knight, R.D., Fisher, P.C., McDonald, I., Zhou, M.-F., Wang, C.Y., Distribution of platinum-group elements in magmatic and altered ores in the Jinchuan intrusion, China: an example of selenium remobilization by postmagmatic fluids. Mineralium Deposita. 48:6 (2013), 767–786, 10.1007/s00126-013-0454-7. 52. Pripachkin, P.V., Rundkvist, T.V., Miroshnikova, Y.A., Chernyavsky, A.V., Borisenko, E.S., Geological structure and ore mineralization of the South Sopchinsky and Gabbro-10 massifs and the Moroshkovoe Lake target, Monchegorsk area, Kola Peninsula. Russia. Miner Deposita. 51:8 (2016), 973–992, 10.1007/s00126-015-0605-0. 53. Rakhimov, I.R., Geology, petrology and ore-mineralization of Late Devonian-Carbon intrusive magmatism of the Western Magnitogorsk zone of the Southern Urals. Candidate's dissertation in Geology and Mineralogy. Ufa., 181, 2017, p (in Russian). 54. Rakhimov, I.R., Ankusheva, N.N., Kholodnov, V.V., Co-Pd-Ag and Th-REE mineralization of host rocks from the exocontact zone of Tashly-Tau massif, Khudolaz complex (South Urals): ore sources and fluid inclusions data). Bulletin of the Tomsk Polytechnic University. Geo Assets. Engineering. 331:8 (2020), 77–91, 10.18799/24131830/2020/8/2770 (in Russian with English abstract). 55. Rakhimov, I.R., Saveliev, D.E., Puchkov, V.N., Salikhov, D.N., Vishnevskiy, A.V., Vladimirov, A.G., First finds of platinum and palladium minerals in sulfide ores of the Khudolaz intrusive complex (Southern Urals). Doklady Earth Sciences. 479:2 (2018), 439–442, 10.1134/S1028334X18040153. 56. Rakhimov, I.R., Vishnevskiy, A.V., Saveliev, D.E., Salikhov, D.N., Vladimirov, A.G., Multi-stage magmatichydrothermal sulfide-PGE mineralization of Khudolaz Complex (South Urals). Geology of ore deposits 63:4 (2021), 354–381, 10.1134/S1075701521040061. 57. Rakhimov, I.R., Saveliev, D.E., Vishnevskiy, A.V., Platinum metal mineralization of South Urals magmatic complexes: geological and geodynamic characterization of formations, problems of genesis and prospects. Geodynamics & Tectonophysics. 12:2 (2021), 365–391, 10.5800/GT-2021-12-2-0529 (in Russian with English abstract). 58. Salikhov, D.N., Kholodnov, V.V., Puchkov, V.N., Rakhimov, I.R., Magnitogorsk zone of the South Urals at the Late Paleozoic: magmatism, fluid regime, metallogeny, geodynamics. Moscow: Nauka, 2019, 392 p (in Russian). 59. Salikhov, D.N., Pshenichnyi, G.N., Magmatism and mineralization of the Magnitogorsk eugeosynclinal earlier consolidation zone. Ufa: BB AS USSR., 112, 1984, 112 (in Russian). 60. Smith, J.W., Holwell, D.A., McDonald, I., Boyce, A.J., The application of S isotopes and S/Se ratios in determining ore-forming processes of magmatic Ni–Cu–PGE sulfide deposits: a cautionary case study from the northern Bushveld Complex. Ore Geology Reviews. 73 (2016), 148–174. 61. Spiridonov, E.M., Serova, A.A., Korotaeva, N.N., Zhukov, N.N., Kulagov, E.A., Belyakov, S.N., Kulikova, I.M., Sereda, E.V., Tushentsova, I.N., Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril'sk sulfide ores. Geology of Ore Deposits 57:5 (2015), 402–432, 10.1134/S1075701515050062. 62. Sugaki, A., Kitakaze, A., High form of pentlandite and its thermal stability // American Mineralogist. 83:1 (1998), 133–140. 63. Su, S., Li, C., Zhou, M.-F., Ripley, E.M., Qi, L., Controls on variations of platinum-group element concentrations in the sulfide ores of the Jinchuan Ni–Cu deposit. Western China. Mineralium Deposita. 43:6 (2008), 609–622, 10.1007/s00126-008-0186-2. 64. Svetlitskaya, T.V., Tolstykh, N.D., Izokh, A.E., Thi, P.N., PGE geochemical constraints on the origin of the Ni-Cu-PGE sulfide mineralization in the Suoi Cun intrusion, Cao Bang province. Northeastern Vietnam. Miner Petrol. 109:2 (2015), 161–180, 10.1007/s00710-014-0361-3. 65. Tokonami, M., Nishiguchi, K., Morimoto, N., Crystal structure of monoclinic pyrrhotite (Fe7S8). American Mineralogist. 57 (1972), 1066–1080. 66. Suárez, S., Prichard, H.M., Velasco, F., Fisher, P.C., McDonald, I., Alteration of platinum-group minerals and dispersion of platinum-group elements during progressive weathering of the Aguablanca Ni–Cu deposit. SW Spain. Mineralium Deposita. 45:4 (2010), 331–350, 10.1007/s00126-009-0275-x.