Инд. авторы: Chepurov A.I., Zhimulev E.I., Chepurov A.A., Sonin V.M.
Заглавие: Where did the largest diamonds grow? The experiments on percolation of Fe-Ni melt through olivine matrix in the presence of hydrocarbons
Библ. ссылка: Chepurov A.I., Zhimulev E.I., Chepurov A.A., Sonin V.M. Where did the largest diamonds grow? The experiments on percolation of Fe-Ni melt through olivine matrix in the presence of hydrocarbons // Lithos. - 2021. - Vol.404-405. - Art.106437. - ISSN 0024-4937. - EISSN 1872-6143.
Внешние системы: DOI: 10.1016/j.lithos.2021.106437; РИНЦ: 47037582; WoS: 000702853400005;
Реферат: eng: Recently it was found that large natural diamonds can grow from a metal liquid. One of the principal issues of the proposed hypothesis is the formation of so-called "pockets" filled with Fe-Ni melt and hydrocarbons in the Earth's mantle. The existing models of Fe migration imply percolation of liquid melt through interconnected interstices between silicate minerals, although these models face several fundamental problems in explaining the process of penetration of Fe melt between solid crystalline phases like silicate and oxide minerals. The aim of the present study is to contribute to the mechanism of Fe-Ni melt migration, and to elucidate the evolution of the "pockets" in the presence of hydrocarbons. The experiments were performed using a high-pressure apparatus "BARS" at pressures 3 and 5 GPa, and temperature 1600 degrees C. A silicate matrix consisting of natural olivine grains was used. The interstices in olivine were filled with anthracene that decomposes under high P-T into a complex hydrocarbon fluid. Percolation of Fe-Ni (64/36 wt%) melt through the interstices was demonstrated which occurred at relatively high rates. The basis of the proposed mechanism is "solubility-enhanced infiltration": Fe-Ni occupies the space filled with light elements or substances that are soluble in the melt. It is suggested that the following simple, but efficient mechanism supports the growth of large diamonds as well as their resorption and storage within silicate mantle of the Earth for a long time.
Ключевые слова: Percolation; High-pressure high-temperature; CORE FORMATION; HIGH-PRESSURE; CATALYZED HYDROGENATION; DIHEDRAL-ANGLE; IRON PARTICLES; FLUID INCLUSIONS; SYSTEM; MANTLE; S LIQUID; Diamond; Fe-Ni; SILICATE MINERALS; Earth's mantle;
Издано: 2021
Физ. характеристика: 106437
Цитирование: 1. Anzolini, C., Nestola, F., Mazzucchelli, M.L., Alvaro, M., Nimis, P., Gianese, A., Morganti, S., Marone, F., Campione, M., Hutchison, M.T., Harris, J.W., Depth of diamond formation obtained from single periclase inclusions. Geology 47:3 (2019), 219–222, 10.1130/G45605.1. 2. Bagdassarov, N., Golabek, G.J., Solferino, G., Schmidt, M.Q.W., Constraints on the Fe-S melt connectivity in mantle silicates from electrical impedance measurements. Phys. Earth Planet. Inter. 177 (2009), 139–146, 10.1016/j.pepi.2009.08.003. 3. Berg, M.T.L., Bromiley, G.D., Butler, I.B., Frost, M., Bradley, R., Carr, J., Le Godes, Y., Montesi, L.G.J., Zhu, W., Miller, K., Perrillat, J.-P., Mariani, E., Tatham, D., Redfern, S.A.T., Deformation-aided segregation of Fe-S liquid from olivine under deep Earth conditions: Implications for core formation in the early solar system. Earth Planet. Sci. Lett. 263 (2017), 38–54, 10.1016/j.pepi.2017.01.004. 4. Buchwald, V.F., The mineralogy of iron meteorites. Philosophical transactions of the Royal Society of London. Ser. A Math. Phys. Sci., 286, 1977 (553–491). 5. Campbell, A.J., Seagle, C.T., Heinz, D.L., Shen, G., Prakapenka, V.B., Partial melting in the iron-sulfur system at high pressure: a synchrotron X-ray diffraction study. Phys. Earth Planet. Inter. 162 (2007), 119–128, 10.1016/j.pepi.2007.04.001. 6. Chabot, N.L., Campbell, A.J., McDonough, W.F., Draper, D.S., Agee, C.B., Humayun, M., Watson, H.C., Cottrell, E., Saslow, S.A., The Fe-C system at 5 GPa and implications for Earth's core. Geochim. Cosmochim. Acta 72 (2008), 4146–4158, 10.1016/j.gca.2008.06.006. 7. Chepurov, A.I., Tomilenko, A.A., Shebanin, A.P., Sobolev, N.V., Fluid inclusions in diamonds from alluvial deposits of Yakutia. Doкlady Akademii Nauk SSSR 336 (1994), 662–665. 8. Chepurov, A.I., Fedorov, I.I., Sonin, V.M., Bagryantsev, D.G., Osorgin, N.Yu., Diamond formation during reduction of oxide- and silicate-carbon systems at high P-T conditions. Eur. J. Mineral. 11 (1999), 355–362, 10.1127/ejm/11/2/0355. 9. Chepurov, A.A., Dereppe, J.M., Fedorov, I.I., Chepurov, A.I., The change of Fe–Ni alloy inclusions in synthetic diamond crystals due to annealing. Diam. Relat. Mater. 9 (2000), 1374–1379, 10.1016/S0925-9635(00)00260-0. 10. Chepurov, A.I., Sonin, V.M., Dereppe, J.M., The channeling action of iron particles in the catalyzed hydrogenation of synthetic diamond. Diam. Relat. Mater. 9 (2000), 1435–1438, 10.1016/S0925-9635(00)00256-9. 11. Chepurov, A.I., Sonin, V.M., Shamaev, P.P., Yelisseyev, A.P., Fedorov, I.I., The action of iron particles at catalyzed hydrogenation of natural diamond. Diam. Relat. Mater. 11 (2002), 1592–1596, 10.1016/S0925-9635(02)00106-1. 12. Chepurov, A.I., Tomilenko, A.A., Zhimulev, E.I., Sonin, V.M., Chepurov, A.A., Surkov, N.V., Kovyazin, S.V., Problem of water in the upper mantle: Antigorite breakdown. Dokl. Earth Sci. 434 (2010), 1275–1278, 10.1134/S1028334X10090291. 13. Chepurov, A.I., Sonin, V.M., Zhimulev, E.I., Chepurov, A.A., Tomilenko, A.A., On the formation of element carbon during decomposition of CaCO3 at high P-T parameters under reducing conditions. Dokl. Earth Sci. 441 (2011), 1738–1741, 10.1134/S1028334X11120233. 14. Chepurov, A.I., Sonin, V.M., Zhimulev, E.I., Chepurov, A.A., Pomazansky, B.S., Zemnukhov, A.L., Dissolution of diamond crystals in a heterogeneous (metal-sulfide-silicate) medium at 4 GPa and 1400°C. J. Mineral. Petrol. Sci. 113 (2018), 59–67, 10.2465/JMPS.170526. 15. Chepurov, A.I., Zhimulev, E.I., Sonin, V.M., Tomilenko, A.A., Pokhilenko, N.P., Experimental test of possible formation of diamond under the differenciation of the Earth. Dokl. Earth Sci. 480 (2018), 722–724, 10.1134/S1028334X18060223. 16. Chepurov, A.A., Sonin, V.M., Dereppe, J.M., Zhimulev, E.I., Chepurov, A.I., How do diamonds grow in metal melt together with silicate minerals? An experimental study of diamond morphology. Eur. J. Mineral. 32 (2020), 41–55, 10.5194/ejm-32-41-2020. 17. Chepurov, A.I., Sonin, V.M., Zhimulev, E.I., Chepurov, A.A., Preservation conditions of CLIPPIR diamonds in the earth's mantle in a heterogeneous metal-sulphide-silicate medium (experimental modeling). J. Mineral. Petrol. Sci. 115:3 (2020), 236–246, 10.2465/jmps.190818. 18. Chepurov, A.I., Tomilenko, A.A., Sonin, V.M., Zhimulev, E.I., Bulbak, T.A., Chepurov, A.A., Sobolev, N.V., Interaction of Fe-Ni-melt with anthracene (C16H10) in the presence of olivine at 3 GPa: fluid phase composition. Dokl. Earth Sci. 492 (2020), 333–337, 10.1134/S1028334X20050050. 19. Dasgupta, R., Buono, A., Whelan, G., Walker, D., High-pressure melting relations in Fe-C-S systems: Implications for formation, evolution, and structure of metallic cores in planetary bodies. Geochim. Cosmochim. Acta 73 (2009), 6678–6691, 10.1016/j.gca.2009.08.001. 20. Day, H.W., A revised diamond-graphite transition curve. Am. Mineral. 97 (2012), 52–62, 10.2138/am.2011.3763. 21. Dreibus, G., Palme, H., Cosmochemical constrains on the Sulphur content in the Earth's core. Geochim. Cosmochim. Acta 60 (1995), 1125–1130, 10.1016/0016-7037(96)00028-2. 22. Fedorov, I.I., Chepurov, A.A., Dereppe, J.M., Redox conditions of metal-carbon melts and natural diamond genesis. Geochem. J. 36 (2002), 247–253, 10.2343/geochemj.36.247. 23. Fedorov, I.I., Chepurov, A.I., Chepurov, A.A., Kuroedov, A.V., Estimation of the rate of postcrystallization self-purification of diamond from metal inclusions in the Earth's mantle. Geochem. Int. 43 (2005), 1235–1239. 24. Frost, D.J., McCammon, C.A., The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 36 (2008), 389–420, 10.1146/annurev.earth.36.031207.124322. 25. Gurney, J.J., Helmstaedt, H.H., Richardson, S.H., Shirey, S.B., Diamonds through Time. Econ. Geol. 105 (2010), 689–712, 10.2113/gsecongeo.105.3.689. 26. Guyot, F., Earth's innermost secrets. Nature 369 (1994), 360–361, 10.1038/369360a0. 27. Hillgren, V.J., Gessmann, C.K., Li, J., An experimental perspective on the light element in the Earth's core. Canup, R.M., Righter, K., (eds.) Origin of the Earth and Moon, 2000, The University of Arizona Press, Tucson. 28. Javoy, M., Kaminski, E., Guyot, F., Andrault, D., Sanloup, C., Moreira, M., Labrosse, S., Jambon, A., Agrinier, P., Davaille, A., Jaupart, C., The chemical composition of the Earth: Enstatite chondrite models. Earth Planet. Sci. Lett. 293 (2010), 259–268, 10.1016/j.epsl.2010.02.033. 29. Karato, S.I., Murthy, V.R., Core formation and chemical equilibrium in the Earth. Part I: Physical considerations. Phys. Earth Planet. Inter. 100 (1997), 61–79, 10.1016/S0031-9201(96)03232-3. 30. Kennedy, C.S., Kennedy, G.C., The equilibrium boundary between graphite and diamond. J. Geophys. Res. 81 (1976), 2467–2470, 10.1029/JB081i014p02467. 31. Lodders, K., Solar system abundance and condensation temperatures of the elements. Astrophys. J. 591 (2003), 1220–1242, 10.1086/375492. 32. Malkovets, V.G., Griffin, W.L., O'Reilly, S.Y., Wood, B.J., Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link. Geology 35 (2007), 339–342, 10.1130/G23092A.1. 33. Mitchell, R.H., Kimberlites: Mineralogy, Geochemistry and Petrology. 1986, Plenum Press, N.Y, 10.1007/978-1-4899-0568-0 442 p. 34. Moore, C.B., Lewis, Ch., Carbon abundances in chondritic meteorites. Science 149 (1965), 317–318, 10.1126/science.149.3681.317. 35. Nestola, F., Inclusions in super-deep diamonds: windows on the very deep Earth. Rendiconti Lincei. Scienze Fisiche e Naturali 28 (2017), 595–604, 10.1007/s12210-017-0607-1. 36. Nestola, F., Jacob, D.E., Pamato, M.G., Pasqualetto, L., Oliveira, B., Greene, S., Perritt, S., Chinn, I., Milani, S., Kueter, N., Sgreva, N., Nimis, P., Secco, L., Harris, J.W., Protogenetic garnet inclusions and the age of diamonds. Geology 47:5 (2019), 431–434, 10.1130/G45781.1. 37. Nestola, F., Zafro, G., Mazzucchelli, M.L., Nimis, P., Andreozzi, G.B., Periotto, B., Princivalle, F., Lenaz, D., Secco, L., Pasqualetto, L., Logvinova, A.M., Sobolev, N.V., Lorenzetti, A., Harris, J.W., Diamond-inclusion system recording old deep lithosphere conditions at Udachnaya (Siberia). Sci. Rep., 9, 2019, 12586, 10.1038/s41598-019-48778-x. 38. Nestola, F., Goodrich, C.A., Morana, M., Barbaro, A., Jakubek, R.S., Christ, O., Brenker, F.E., Domeneghetti, M.C., Dalconi, M.C., Alvaro, M., Fioretti, A.M., Litasov, K.D., Fries, M.D., Leoni, M., Casati, N.P.M., Jenniskens, P., Shaddad, M.H., Impact shock origin of diamonds in ureilite meteorites. PNAS 117 (2020), 25310–25318, 10.1073/pnas.1919067117. 39. Nimis, P., Dencker, I., Zanetti, A., Sobolev, N.V., Major and trace element composition of chromian diopsides from the Zagadochnaya kimberlite (Yakutia, Russia): metasomatic processes, thermobarometry and diamond potential. Lithos 112 (2009), 397–412, 10.1016/j.lithos.2009.03.038. 40. Osorgin, N.I., Palyanov, Yu.N., Sobolev, N.V., Khokhryakova, I.P., Chepurov, A.I., Shugurova, N.A., Inclusions of liquefied gases in diamond crystals. Doкlady Akademii Nauk SSSR 293 (1987), 1214–1217. 41. Otsuka, K., Karato, S., Khokhryakova, I.P., Chepurov, A.I., Shugurova, N.A., Deep penetration of molten iron into the mantle caused by a morphological instability. Nature 492 (2012), 2430–2460, 10.1038/nature11663. 42. Palme, H., O'Neill, H.S.C., Cosmochemical estimates of mantle composition. Treatise Geochem. 2 (2003), 1–38, 10.1016/B0-08-043751-6/02177-0. 43. Poirier, J.P., Light elements in the Earth's outer core: a critical review. Phys. Earth Planet. Inter. 85 (1994), 319–337, 10.1016/0031-9201(94)90120-1. 44. Reddy, S.N.S., Leonard, D.N., Wiggins, L.B., Jacob, K.T., Internal displacement reactions in multicomponent oxides: part II. Oxide solid solutions of wide composition range. Metall. Mater. Trans. A 36 (2005), 2695–2704, 10.1007/s11661-005-0266-1. 45. Ringwood, A.E., Origin of the Earth and Moon. 1979, Springer, New York. 46. Roberts, J.J., Kinney, J.H., Siebert, J., Ryerson, F.J., Fe-Ni-S melt permeability in olivine: implications for planetary core formation. Geophys. Res. Lett., 34, 2007, L14306, 10.1029/2007GL030497. 47. Rohrbach, A., Ghosh, S., Schmidt, M.W., Wijbrans, C.H., Klemme, S., The stability of Fe–Ni carbides in the Earth's mantle: evidence for a low Fe–Ni–C melt fraction in the deep mantle. Earth Planet. Sci. Lett. 388 (2014), 211–221, 10.1016/j.epsl.2013.12.007. 48. Ross, A.J., Jones, A.P., Downes, H.D., Smith, C.L., Higgie, K., Hazael, R., Carbon in ureilite meteorites. Geophysical Research Abstracts, 11, 2009. 49. Rubie, D.C., Nimmo, F., Melosh, H.J., Schubert, G., (eds.) Formation of the Earth’ Core. Treatise on Geophysics, 2nd ed., 9, 2015, Elsevier, Oxford, 43–79. 50. Shannon, M.C., Agee, C.B., Percolation of core melts at lower mantle conditions. Science 280 (1998), 1059–1061, 10.1126/science.280.5366.1059. 51. Shanos, G., Carbon in meteorites. Meteorite, 2010, 29–33. 52. Shatskiy, A., Borzdov, Yu.M., Litasov, K.D., Ohtani, E., Khokhryakov, A.F., Pal'yanov, Yu.N., Katsura, T., Pressless split-sphere apparatus equipped with scaled-up Kawai-cell for mineralogical studies at 10–20 GPa. Am. Mineral. 96 (2011), 541–548, 10.2138/am.2011.3643. 53. Shi, C.Y., Zhang, L., Yang, W., Liu, Y., Wang, J., Meng, Y., Andrews, J.C., Mao, W.L., Formation of an interconnected network of iron melt at Earth's lower mantle conditions. Nat. Geosci. 6 (2013), 971–975, 10.1038/ngeo1956. 54. Smith, E.M., Shirey, S.B., Nestola, F., Bullock, E.S., Wang, J., Richardson, S.H., Wang, W., Large gem diamonds from metallic liquid in Earth's deep mantle. Science 354 (2016), 1403–1405, 10.1126/science.aal1303. 55. Smith, E.M., Ni, P., Shirey, S.B., Richardson, S.H., Wang, W., Shahar, A., Heavy iron in large gem diamonds traces deep subduction of serpentinized ocean floor. Sci. Adv., 7, 2021, 10.1126/sciadv.abe9773 eabe9773. 56. Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., Seryotkin, Y.V., Yefimova, E.S., Floss, C., Taylor, L.A., Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study. Lithos 77 (2004), 225–242, 10.1016/j.lithos.2004.04.001. 57. Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., Pokhilenko, N.P., Malygina, E.V., Kuzmin, D.V., Sobolev, A.V., Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia. Lithos 2009:112 (2009), 701–713, 10.1016/j.lithos.2009.06.038. 58. Sobolev, N.V., Logvinova, A.M., Tomilenko, A.A., Wirth, R., Bul'bak, T.A., Luk'yanova, L.I., Fedorova, E.N., Reutsky, V.N., Efimova, E.S., Mineral and fluid inclusions in diamonds from the Urals placers, Russia: evidence for solid molecular N2 and hydrocarbons in fluid inclusions. Geochim. Cosmochim. Acta 266 (2019), 197–219, 10.1016/j.gca.2019.08.028. 59. Sokol, A.G., Borzdov, Y.M., Palyanov, Y.N., Khokhryakov, A.F., High-temperature calibration of a multi-anvil high pressure apparatus. High Pressure Res. 35 (2015), 139–140, 10.1080/08957959.2015.1017819. 60. Sonin, V.M., Chepurov, A.I., Fedorov, I.I., The action of iron particles at catalyzed hydrogenation of {100} and {110} faces of synthetic diamond. Diam. Relat. Mater. 12 (2003), 1559–1562, 10.1016/S0925-9635(03)00242-5. 61. Sonin, V.M., Leech, M., Chepurov, A.A., Zhimulev, E.I., Chepurov, A.I., Why are diamonds preserved in UHP metamorphic complexes? Experimental evidence for the effect of pressure on diamond graphitization. Int. Geol. Rev. 61 (2019), 504–519, 10.1080/00206814.2018.1435310. 62. Stevenson, D.J., Fluid dynamics of core formation. Newsom, H.E., Drake, J.H., (eds.) Origin of the Earth, 1990, Oxford University Press, New York, 231–249. 63. Steward, A.J., Schmidt, M.W., Van Westrenen, W., Liebske, C., Mars: a new core-crystallization regime. Science 316 (2008), 1323–1325, 10.1126/science.1140549. 64. Terasaki, H., Frost, D.J., Rubie, D.C., Langenhorst, F., The effect of oxygen and Sulphur on the dihedral angle between Fe–O–S melt and silicate minerals at high pressure: Implications for Martian core formation. Earth Planet. Sci. Lett. 232 (2005), 379–392, 10.1016/j.epsl.2005.01.030. 65. Terasaki, H., Frost, D.J., Rubie, D.C., Langenhorst, F., Interconnectivity of Fe-O-S liquid in polycrystalline silicate perovskite at lower mantle conditions. Phys. Earth Planet. Inter. 161 (2007), 170–176, 10.1016/j.pepi.2007.01.011. 66. Terasaki, H., Frost, D.J., Rubie, D.C., Langenhorst, F., Percolative core formation in planetesimals. Earth Planet. Sci. Lett. 273 (2008), 132–137, 10.1016/j.epsl.2008.06.019. 67. Tielens, A.G.G.M., Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46 (2008), 289–337, 10.1146/annurev.astro.46.060407.145211. 68. Tomilenko, A.A., Bil'bak, T.A., Loginova, A.M., Sonin, V.M., Sobolev, N.V., Composition features of volatile components in diamonds from the placers in the northeastern part of the Siberian platform by gas chromatography-mass spectrometry. Dokl. Earth Sci. 481 (2018), 953–957, 10.1134/S1028334X18070309. 69. Usselman, T., Experimental approach to the state of the core: part 1. The liquids relations of the Fe-rich portion of the Fe-Ni-S system from 30 to 100 kbar. Am. J. Sci. 275 (1975), 278–290. 70. Von Bargen, N., Waff, H.S., Permiabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J. Geophys. Res. 91 (1986), 9261–9276, 10.1029/JB091iB09p09261. 71. Wade, J., Wood, B.J., Core formation and oxidation state of the Earth. Earth Planet. Sci. Lett. 236 (2005), 78–95, 10.1016/j.epsl.2005.05.017. 72. Walte, N.P., Becker, J.K., Bons, P.D., Rubie, D.C., Frost, D.J., Liquid-distribution and attainment of textural equilibrium in a partially-molten crystalline system with a high dihedral-angle liquid phase. Earth Planet. Sci. Lett. 262 (2007), 517–532, 10.1016/j.epsl.2007.08.003. 73. Walte, N.P., Rubic, D.C., Bons, P.D., Frost, D.J., Deformation of a crystalline aggregate with a small percentage of high-dihedral-angle liquid: Implications for core-mantle differentiation during planetary formation. Earth Planet. Sci. Lett. 305 (2011), 124–134, 10.1016/j.epsl.2011.02.049. 74. Wood, B.J., Walter, M.J., Wade, J., Accretion of the Earth and segregation of its core. Nature 441 (2006), 825–833, 10.1038/nature04763. 75. Yoshino, T., Walter, M.J., Katsura, T., Connectivity of molten Fe alloy in peridotite based on in situ electrical conductivity measurements: implications for core formation in terrestrial planets. Earth Planet. Sci. Lett. 222 (2004), 625–643, 10.1016/j.epsl.2004.03.010. 76. Zhang, Z., Hasting, P., Von der Handt, A., Hirschmann, M.M., Experimental determination of carbon solubility in Fe-Ni-S melts. Earth Planet. Sci. Lett. 225 (2018), 66–79, 10.1016/j.gca.2018.01.009. 77. Zhimulev, E.I., Chepurov, A.I., Sinyakova, E.F., Sonin, V.M., Chepurov, A.A., Pokhilenko, N.P., Diamond crystallization in the Fe-Co-S-C and Fe-Ni-S-C systems and the role of sulfide-metal melts in the genesis of diamond. Geochem. Int. 50 (2012), 205–216, 10.1134/S0016702912030111. 78. Zhimulev, E.I., Chepurov, A.I., Sonin, V.M., Litasov, K.D., Chepurov, A.A., Experimental modeling of percolation of molten iron through polycrystalline olivine matrix at 2.0-5.5 GPa and 1600°C. High Pressure Res. 38 (2018), 153–164, 10.1080/08957959.2018.1458847.