Инд. авторы: Chayka I.F., Kamenetsky V.S., Vladykin N.V., Kontonikas-Charos A., Prokopyev I.R, Stepanov S.Y., Krasheninnikov S.P.
Заглавие: Origin of alkali-rich volcanic and alkali-poor intrusive carbonatites from a common parental magma
Библ. ссылка: Chayka I.F., Kamenetsky V.S., Vladykin N.V., Kontonikas-Charos A., Prokopyev I.R, Stepanov S.Y., Krasheninnikov S.P. Origin of alkali-rich volcanic and alkali-poor intrusive carbonatites from a common parental magma // Scientific Reports. - 2021. - Vol.11. - Iss. 1. - Art.17627. - ISSN 2045-2322.
Внешние системы: DOI: 10.1038/s41598-021-97014-y; РИНЦ: 47079245; PubMed: 34475480; WoS: 000702017500065;
Реферат: eng: The discrepancy between Na-rich compositions of modern carbonatitic lavas (Oldoinyo Lengai volcano) and alkali-poor ancient carbonatites remains a topical problem in petrology. Although both are supposedly considered to originate via fractional crystallization of a "common parent" alkali-bearing Ca-carbonatitic magma, there is a significant compositional gap between the Oldoinyo Lengai carbonatites and all other natural compositions reported (including melt inclusions in carbonatitic minerals). In an attempt to resolve this, we investigate the petrogenesis of Ca-carbonatites from two occurrences (Guli, Northern Siberia and Tagna, Southern Siberia), focusing on mineral textures and alkali-rich multiphase primary inclusions hosted within apatite and magnetite. Apatite-hosted inclusions are interpreted as trapped melts at an early magmatic stage, whereas inclusions in magnetite represent proxies for the intercumulus environment. Melts obtained by heating and quenching the inclusions, show a progressive increase in alkali concentrations transitioning from moderately alkaline Ca-carbonatites through to the "calcite CaCO3+melt=nyerereite (Na,K)(2)Ca-2(CO3)(3)" peritectic, and finally towards Oldoinyo Lengai lava compositions. These results give novel empirical evidence supporting the view that Na-carbonatitic melts, similar to those of the Oldoinyo Lengai, may form via fractionation of a moderately alkaline Ca-carbonatitic melt, and therefore provide the "missing piece" in the puzzle of the Na-carbonatite's origin. In addition, we conclude that the compositions of the Guli and Tagna carbonatites had alkali-rich primary magmatic compositions, but were subsequently altered by replacement of alkaline assemblages by calcite and dolomite.
Ключевые слова: APATITE; GENESIS; MAGNETITE; MANTLE SOURCES; BUSHVELD COMPLEX; LIQUID IMMISCIBILITY; EASTERN SAYAN; CRYSTALLIZED MELT INCLUSIONS; MASSIF; CALCIOCARBONATITE;
Издано: 2021
Физ. характеристика: 17627
Цитирование: 1. Jones, A. P., Genge, M. & Carmody, L. Carbonate melts and carbonatites. Rev. Mineral. Geochem. 75, 289–322 (2013). DOI: 10.2138/rmg.2013.75.10 2. Mitchell, R. H. Carbonatites and carbonatites and carbonatites. Can. Mineral. 43, 2049–2068 (2005). DOI: 10.2113/gscanmin.43.6.2049 3. Simandl, G. J. & Paradis, S. Carbonatites: related ore deposits, resources, footprint, and exploration methods. Appl. Earth Sci. 127, 123–152. 10.1080/25726838.2018.1516935 (2018). DOI: 10.1080/25726838.2018.1516935 4. Gales, E., Black, B. & Elkins-Tanton, L. T. Carbonatites as a record of the carbon isotope composition of large igneous province outgassing. Earth Planet. Sci. Lett. 535, 116076. 10.1016/j.epsl.2020.116076 (2020). DOI: 10.1016/j.epsl.2020.116076 5. Vladykin, N. Genesis and crystallization of ultramafic alkaline carbonatite magmas of Siberia: ore potential, mantle sources, and relationship with plume activity. Russ. Geol. Geophys. 57, 698–712 (2016). DOI: 10.1016/j.rgg.2015.09.014 6. Gittins, J. The origin and evolution of carbonatite magmas. Carbonatites: genesis and evolution. Unwin Hyman, London, 580–600 (1989). 7. Le Bas, M. Carbonatite magmas. Mineral. Mag. 44, 133–140 (1981). DOI: 10.1180/minmag.1981.044.334.02 8. Stoppa, F. et al. Italian carbonatite system: From mantle to ore-deposit. Ore Geol. Rev. 114, 103041. 10.1016/j.oregeorev.2019.103041 (2019). DOI: 10.1016/j.oregeorev.2019.103041 9. Vladykin, N. V. & Pirajno, F. Types of carbonatites: Geochemistry, genesis and mantle sources. Lithos 386-387, 105982 (2021). DOI: 10.1016/j.lithos.2021.105982 10. Milton, C. The ‘Natro-carbonatite lava of Oldoinyo Lengai, Tanzania in Geological Society America Annual Meeting (1968) 11. Bell, K. & Dawson, J. B. An assessment of the alleged role of evaporites and saline brines in the origin of natrocarbonatite. In Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites (eds Bell, K. & Keller, J.) 137–147 (Springer, 1995). DOI: 10.1007/978-3-642-79182-6_11 12. Andreeva, I. Carbonatitic melts in olivine and magnetite from rare-metal carbonatite of the Belaya Zima alkaline carbonatite complex (East Sayan, Russia). Dokl. Earth Sci. 455, 436–440 (2014). DOI: 10.1134/S1028334X14050018 13. Andreeva, I., Kovalenko, V. & Kononkova, N. Natrocarbonatitic melts of the Bol’shaya Tagna Massif, the eastern Sayan region. Dokl. Earth Sci. 408, 542–546 (2006). DOI: 10.1134/S1028334X06040088 14. Chen, W., Kamenetsky, V. S. & Simonetti, A. Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada. Nat. Commun. 4, 1–6 (2013). 15. Guzmics, T. et al. Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis. Contrib. Miner. Petrol. 161, 177–196 (2011). DOI: 10.1007/s00410-010-0525-z 16. Guzmics, T. et al. Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano (Tanzania): evolution of carbonated nephelinitic magma. Contrib. Miner. Petrol. 164, 101–122 (2012). DOI: 10.1007/s00410-012-0728-6 17. Isakova, A., Panina, L. & Rokosova, E. Y. Carbonatite melts and genesis of apatite mineralization in the Guli pluton (northern East Siberia). Russ. Geol. Geophys. 56, 466–475 (2015). DOI: 10.1016/j.rgg.2015.02.007 18. Kamenetsky, V. S. et al. Chlorine in mantle-derived carbonatite melts revealed by halite in the St.-Honoré intrusion (Québec, Canada). Geology 43, 687–690 (2015). DOI: 10.1130/G36843.1 19. Kogarko, L., Plant, D., Henderson, C. & Kjarsgaard, B. Na-rich carbonate inclusions in perovskite and calzirtite from the Guli intrusive Ca-carbonatite, polar Siberia. Contrib. Miner. Petrol. 109, 124–129 (1991). DOI: 10.1007/BF00687205 20. Nielsen, T., Solovova, I. & Veksler, I. Parental melts of melilitolite and origin of alkaline carbonatite: Evidence from crystallised melt inclusions, Gardiner complex. Contrib. Miner. Petrol. 126, 331–344 (1997). DOI: 10.1007/s004100050254 21. Panina, L. & Isakova, A. Genesis of apatite ores of the Magan massif (northern East Siberia). Russ. Geol. Geophys. 57, 519–528 (2016). DOI: 10.1016/j.rgg.2016.04.002 22. Panina, L. & Motorina, I. Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts. Geochem. Int. 46, 448–464 (2008). DOI: 10.1134/S0016702908050029 23. Sharygin, V. & Doroshkevich, A. Multiphase inclusions in zircons from Chuktukon carbonatite massif, Chadobets upland, Russia. in Proceedings of the Abstract Volume of XXXIV International Conference “Magmatism of the Earth and Related Strategic Metal Deposits”, Miass, Russia. 4–9 (2017). 24. Sharygin, V. V. & Doroshkevich, A. G. Mineralogy of secondary olivine-hosted inclusions in calcite carbonatites of the Belaya Zima alkaline complex, Eastern Sayan, Russia: Evidence for late-magmatic Na-Ca-rich carbonate composition. J. Geol. Soc. India 90, 524–530 (2017). DOI: 10.1007/s12594-017-0748-y 25. Veksler, I., Nielsen, T. & Sokolov, S. Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. J. Petrol. 39, 2015–2031 (1998). DOI: 10.1093/petroj/39.11-12.2015 26. Weidendorfer, D., Schmidt, M. W. & Mattsson, H. B. A common origin of carbonatite magmas. Geology 45, 507–510 (2017). DOI: 10.1130/G38801.1 27. Zhabin, A. Primary textural-structural features of carbonatites and their metamorphic evolution. Int. Geol. Rev. 13, 1087–1096 (1971). DOI: 10.1080/00206817109475540 28. Malich, K., Khiller, V., Badanina, I. Y. & Belousova, E. Results of dating of thorianite and baddeleyite from carbonatites of the Guli massif, Russia. Doklady Earth Sci. 464, 1029–1032 (2015). DOI: 10.1134/S1028334X15100050 29. Yegorov, L. Form, structure and development of the Guli ultramafic-alkalic and carbonatite pluton. Int. Geol. Rev. 31, 1226–1239 (1989). DOI: 10.1080/00206818909465975 30. Vladykin, N., Morikiyo, T. & Miyazaki, T. Sr and Nd isotopes geochemistry of alkaline and carbonatite complexes of Siberia and Mongolia and some geodynamic consequences. In Proc. 5 Inter. Conf.«Problems of sources of deep magmatism and plumes». Irkutsk: Publ. House of the Institute of Geography SB RAS. (2005) (in Russian). 31. Frolov, A. A. & Belov, S. V. The complex carbonatite deposits of the Ziminsk Ore District (Eastern Sayan, Russia). Geol. Ore Deposits 41, 94–113 (1999). 32. Pikalova, V. S. Geology-economic assesment of the new potentally-valuable type of niobium ores on the example of the Bolshetagninskoye deposit PhD thesis, All-Russian Scientific-Research Institute of Mineral Resources named after N.M.Fedorovsky, (2017) (in Russian). 33. Howarth, G. H. et al. Superplume metasomatism: Evidence from Siberian mantle xenoliths. Lithos 184–187, 209–224. 10.1016/j.lithos.2013.09.006 (2014). DOI: 10.1016/j.lithos.2013.09.006 34. Sobolev, A. V., Krivolutskaya, N. A. & Kuzmin, D. Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology 17, 253–286 (2009). DOI: 10.1134/S0869591109030047 35. Osorgin, N. Chromatographic analysis of the gas phase in minerals (methods, equipment, metrology). 1990, Novosibirsk: Preprint N11: 32 (in Russian). 36. Butcher, A. R. & Merkle, R. K. Postcumulus modification of magnetite grains in the upper zone of the Bushveld Complex, South Africa. Lithos 20, 247–260 (1987). DOI: 10.1016/0024-4937(87)90012-0 37. Panina, L. Multiphase carbonate-salt immiscibility in carbonatite melts: data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia). Contrib. Miner. Petrol. 150, 19–36 (2005). DOI: 10.1007/s00410-005-0001-3 38. Morgan, G. B. & London, D. Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. Am. Miner. 81, 1176–1185 (1996). DOI: 10.2138/am-1996-9-1016 39. Lavrent’ev, Y. G., Karmanov, N., Usova, L,. Electron probe microanalysis of minerals: Microanalyzer or scanning electron microscope?. Russian Geol. Geophys. 56(8), 1154–1161 (2015). DOI: 10.1016/j.rgg.2015.07.006 40. Mitchell, R. H. Peralkaline nephelinite–natrocarbonatite immiscibility and carbonatite assimilation at Oldoinyo Lengai, Tanzania. Contrib. Mineral. Petrol. 158, 589–598 (2009). DOI: 10.1007/s00410-009-0398-1 41. Kjarsgaard, B., Hamilton, D. & Peterson, T. Peralkaline nephelinite/carbonatite liquid immiscibility: comparison of phase compositions in experiments and natural lavas from Oldoinyo Lengai in Carbonatite volcanism, 163–190 (Springer, 1995). 42. Kjarsgaard, B. & Peterson, T. Nephelinite-carbonatite liquid immiscibility at Shombole volcano, East Africa: petrographic and experimental evidence. Mineral. Petrol. 43, 293–314 (1991). DOI: 10.1007/BF01164532 43. Chayka, I. F. et al. Hybrid nature of the platinum group element chromite-rich rocks of the Norilsk 1 intrusion: Genetic constraints from Cr spinel and spinel-hosted multiphase inclusions. Econ. Geol. 115, 1321–1342 (2020). DOI: 10.5382/econgeo.4745 44. Lorand, J. & Cottin, J. Na-Ti-Zr-H2O-rich mineral inclusions indicating postcumulus chrome-spinel dissolution and recrystallization in the Western Laouni mafic intrusion Algeria. Contrib. Mineral. Petrol. 97, 251–263 (1987). DOI: 10.1007/BF00371244 45. Yudovskaya, M. A. et al. Bushveld symplectic and sieve-textured chromite is a result of coupled dissolution-reprecipitation: A comparison with xenocrystic chromite reactions in arc basalt. Contrib. Miner. Petrol. 174, 1–21 (2019). DOI: 10.1007/s00410-019-1613-3 46. Casillas, R., Demény, A., Nagy, G., Ahijado, A. & Fernández, C. Metacarbonatites in the Basal Complex of Fuerteventura (Canary Islands). The role of fluid/rock interactions during contact metamorphism and anatexis. Lithos 125, 503–520 (2011). 47. Madugalla, N. S., Pitawala, A. & Manthilake, G. Primary and secondary textures of dolomite in Eppawala carbonatites, Sri Lanka: implications for their petrogenetic history. J. Geosci. 62, 187–200 (2017). DOI: 10.3190/jgeosci.242 48. Potter, N. J. et al. Textural evolution of perovskite in the Afrikanda alkaline–ultramafic complex, Kola Peninsula, Russia. Contrib. Mineral. Petrol. 173, 1–20 (2018). DOI: 10.1007/s00410-018-1531-9 49. Hulbert, L. & Von Gruenewaldt, G. Textural and compositional features of chromite in the lower and critical zones of the Bushveld Complex south of Potgietersrus. Econ. Geol. 80, 872–895 (1985). DOI: 10.2113/gsecongeo.80.4.872 50. Potter, N. et al. Polymineralic inclusions in oxide minerals of the Afrikanda alkaline-ultramafic complex: Implications for the evolution of perovskite mineralisation. Contrib. Miner. Petrol. 175, 1–13 (2020). DOI: 10.1007/s00410-020-1654-7 51. Hess, G. B., Shagam, R., Hargraves, R. B., Morgan, W. J., Van Houten, F. B., Burk, C. A., Holland, H. D. & Hollister, L. C. Heat and mass transport during crystallization of the Stillwater igneous complex. in Studies in Earth and Space Sciences Vol. 132 (Geological Society of America, 1972). 52. Irvine, N. Magmatic infiltration metasomatism, double diffusive fractional crystallization, and adcumulus growth in the Muskox intrusion and other layered intrusions. in Physics of magmatic processes 325–384 (Princeton University Press, 1980). 53. Marsh, J. S., Pasecznyk, M. J. & Boudreau, A. E. Formation of chromitite seams and associated anorthosites in layered intrusion by reactive volatile-rich fluid infiltration. Journal of Petrology (2021). 54. Mathez, E. Magmatic metasomatism and formation of the Merensky reef, Bushveld Complex. Contrib. Miner. Petrol. 119, 277–286 (1995). DOI: 10.1007/BF00307287 55. Sparks, R. S. J., Huppert, H. E., Kerr, R., McKenzie, D. & Tait, S. R. Postcumulus processes in layered intrusions. Geol. Mag. 122, 555–568 (1985). DOI: 10.1017/S0016756800035470 56. Tait, S., Huppert, H. E. & Sparks, R. The role of compositional convection in the formation of adcumulate rocks. Lithos 17, 139–146 (1984). DOI: 10.1016/0024-4937(84)90014-8 57. Keller, J. & Zaitsev, A. N. Calciocarbonatite dykes at Oldoinyo Lengai, Tanzania: the fate of natrocarbonatite. Can. Mineral. 44, 857–876 (2006). DOI: 10.2113/gscanmin.44.4.857 58. Zaitsev, A. N. & Keller, J. Mineralogical and chemical transformation of Oldoinyo Lengai natrocarbonatites, Tanzania. Lithos 91, 191–207 (2006). DOI: 10.1016/j.lithos.2006.03.018 59. Hay, R. L. Natrocarbonatite tephra of Kerimasi volcano, Tanzania. Geology 11, 599–602 (1983). DOI: 10.1130/0091-7613(1983)11<599:NTOKVT>2.0.CO;2 60. Zaitsev, A., Wenzel, T., Vennemann, T. & Markl, G. Tinderet volcano, Kenya: an altered natrocarbonatite locality?. Mineral. Mag. 77, 213–226 (2013). DOI: 10.1180/minmag.2013.077.3.01 61. Mitchell, R. H. & Dawson, J. B. Mineralogy of volcanic calciocarbonatites from the Trig Point Hill debris flow, Kerimasi volcano, Tanzania: implications for the altered natrocarbonatite hypothesis. Mineral. Mag. 85, 484–495. 10.1180/mgm.2020.97 (2020). DOI: 10.1180/mgm.2020.97