Цитирование: | 1. Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., Fisher, N.I., Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J. Geochem. Explor. 76 (2002), 45–69, 10.1016/S0375-6742(02)00204-2.
2. O'Sullivan, G., Chew, D.M., Kenny, G., Henrichs, I., Mulligan, D., The trace element composition of apatite and its application to detrital provenance studies. Earth Sci. Rev., 531, 2020, 103044, 10.1016/j.earscirev.2019.103044.
3. von Eynatten, H., Dunkl, I., Assessing the sediment factory: the role of single grain analysis. Earth Sci. Rev. 115 (2012), 97–120, 10.1016/j.earscirev.2012.08.001.
4. Cogne, N., Chew, D., Donelick, R., Ansberque, C., LA-ICP-MS apatite fission track dating: a practical zeta-based approach. Chem. Geol., 531, 2020, 119302, 10.1016/j.chemgeo.2019.119302.
5. Gleadow, A.J.W., Fission-track dating methods: what are the real alternatives?. Nucl. Tracks 5 (1981), 3–14, 10.1016/0191-278X(81)90021-4.
6. Thompson, J., Meffre, S., Maas, R., Kamenetsky, V., Kamenetsky, M., Goemann, K., Ehrig, K., Danyushevsky, L., Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite. J. Anal. At. Spectrom. 31 (2016), 1206–1215, 10.1039/C6JA00048G.
7. Teiber, H., Marks, M.A.W., Arzamastsev, A.A., Wenzel, T., Markl, G., Compositional variation in apatite from various host rocks: clues with regards to source composition and crystallization conditions. J. Mineral. Geochem. 192 (2015), 151–167, 10.1127/njma/2015/0277.
8. Chew, D.M., Babechuk, M.G., Cogne, N., Mark, C., O'Sullivan, G.J., Henrichs, I.A., Doepke, D., Mckenna, C.A., [LA, Q]-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards. Chem. Geol. 435 (2016), 35–48, 10.1016/j.chemgeo.2016.03.028.
9. Caulfield, J.T., Tomlinson, E.L., Chew, D.M., Marks, M.A.W., McKenna, C.A., Ubide, T., Smith, V.C., Microanalysis of Cl, Br and I in apatite, scapolite and silicate glass by LA-ICP-MS. Chem. Geol., 557, 2020, 119854, 10.1016/j.chemgeo.2020.119854.
10. Wudarska, A., Słaby, E., Wiedenbeck, M., Barnes, J.D., Bonifacie, M., Sturchio, N.C., Bardoux, G., Couffignal, F., Glodny, J., Heraty, L., John, T., Inter-laboratory characterisation of apatite reference materials for chlorine isotope analysis. Geostand. Geoanal. Res. 45 (2020), 121–142, 10.1111/ggr.12366.
11. Zhang, J., Lin, Y., Yang, W., Hao, J., Hu, S., Micro-scale [~10 mm] analyses of rare earth elements in silicate glass, zircon and apatite with NanoSIMS. Int. J. Mass Spectrom. 406 (2016), 48–54, 10.1016/j.ijms.2016.06.004.
12. Sitko, R., Zawisz, B., Czajain, M., Fundamental parameters method for determination of rare earth elements in apatites by wavelength-dispersive X-ray fluorescence spectrometry. J. Anal. At. Spectrom. 20 (2005), 741–745, 10.1039/B502994E.
13. Maltsev, A.S., Ivanov, A.V., Chubarov, V.M., Pashkova, G.V., Panteeva, S.V., Reznitskii, L.Z., Development and validation of a method for multielement analysis of apatite by total-reflection X-ray fluorescence spectrometry. Talanta, 214, 2020, 120870, 10.1016/j.talanta.2020.120870.
14. Klockenkämper, R., von Bohlen, A., Total-Reflection X-Ray Fluorescence Analysis and Related Methods. 2nd ed., 2015, Wiley, New York.
15. Menzel, M., Fittschen, U.E.A., Total reflection X-ray fluorescence analysis of airborne silver nanoparticles from fabrics. Anal. Chem. 86 (2014), 3053–3059, 10.1021/ac404017u.
16. Theisen, M., Niessner, R., Elemental analysis of airborne dust samples with TXRF: comparison of oxygen-plasma ashing on sapphire carriers and acid digestion for sample preparation. Fresenius J. Anal. Chem. 365 (1999), 332–337, 10.1007/s002160051496.
17. Spanke, J., von Bohlen, A., Klockenkämper, R., Quentmeier, A., Klockow, D., Total reflection X-ray fluorescence analysis of laser-deposited solid sample material. J. Anal. At. Spectrom. 15 (2000), 673–679, 10.1039/B001415J.
18. Vázquez, C., Custo, G., Barrio, N., Burucúa, J., Boeykens, S., Marte, F., Inorganic pigment study of the San Pedro Gonzalez Telmo Sibyls using total reflection X-ray fluorescence. Spectrochim. Acta B 65 (2010), 852–858, 10.1016/j.sab.2010.06.007.
19. Magalhães, T., Carvalho, M.L., von Bohlen, A., Becker, M., Study on trace elements behaviour in cancerous and healthy tissues of colon, breast and stomach: total reflection X-ray fluorescence applications. Spectrochim. Acta B 65 (2010), 493–498, 10.1016/j.sab.2010.04.001.
20. Mages, M., Bandow, N., Küster, E., Brack, W., von Tümpling, W., Zinc and cadmium accumulation in single zebrafish (Danio rerio) embryos—a total reflection X-ray fluorescence spectrometry application. Spectrochim. Acta B 63 (2008), 1443–1449, 10.1016/j.sab.2008.10.015.
21. Woelfl, S., Mages, M., Mercado, S., Villalobos, L., Óvári, M., Encina, F., Determination of trace elements in planktonic microcrustaceans using total reflection X-ray fluorescence (TXRF): first results from two Chilean lakes. Anal. Bioanal. Chem. 378 (2004), 1088–1094, 10.1007/s00216-003-2273-7.
22. Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A., Maas, R., Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst., 11, 2010, 10.1029/2009GC002618 Q0AA06.
23. Marks, M.A.W., Wenzel, T., Whitehouse, M.J., Loose, M., Zack, T., Barth, M., Worgard, L., Krasz, V., Nelson Eby, G., Stosnach, H., Markl, G., The volatile inventory [F, Cl, Br, S, C] of magmatic apatite: an integrated analytical approach. Chem. Geol. 291 (2012), 241–255, 10.1016/j.chemgeo.2011.10.026.
24. Yang, Y., Wu, F.-Y., Yang, J.-H., Chew, D.M., Xie, L.-W., Chu, Z.-Y., Zhang, Y.-B., Huang, C., Sr and Nd isotopic compositions of apatite reference materials used in U–Th–Pb geochronology. Chem. Geol. 385 (2014), 35–55, 10.1016/j.chemgeo.2014.07.012.
25. Kraml, M., Pik, R., Rahn, M., Selbekk, R., Carignan, J., Keller, J., A new multi-mineral age reference material for 40Ar/39Ar,(U-Th)/He and fission track dating methods: the Limberg t3 Tuff. Geostand. Geoanal. Res. 30 (2006), 73–86, 10.1111/j.1751-908X.2006.tb00914.x.
26. Green, P.F., Comparison of zeta calibration baselines for fission-track dating of apatite, zircon and sphene. Chem. Geol. Isot. Geosci. Sect. 58 (1985), 1–22, 10.1016/0168-9622(85)90023-5.
27. Hasebe, N., Tamura, A., Arai, S., Zeta equivalent fission-track dating using LA-ICP-MS and examples with simultaneous U–Pb dating. Island Arc 22 (2013), 280–291, 10.1111/iar.12040.
28. De Grave, J., De Pelsmaeker, E., Zhimulev, F.I., Glorie, S., Buslov, M.M., Van den haute, P., Meso-Cenozoic building of the northern Central Asian Orogenic Belt: Thermotectonic history of the Tuva region. Tectonophysics 621 (2014), 44–59, 10.1016/j.tecto.2014.01.039.
29. Ardhaoui, K., Solution enthalpies of calcium fluorapatite in nitric acid and in pure water. Physicochem. Probl. Miner. Process., 56, 2020, 10.37190/ppmp/120798.
30. Horntrich, C., Kregsamer, P., Wobrauschek, P., Streli, C., Considerations on the ideal sample shape for Total Reflection X-ray Fluorescence Analysis. Spectrochim. Acta B 66 (2011), 815–821, 10.1016/j.sab.2011.11.003.
31. Hellin, D., Fyen, W., Rip, J., Delande, T., Mertens, P.W., De Gendt, S., Vinckier, C., Saturation effects in TXRF on micro-droplet residue samples. Anal. At. Spectrom. 19 (2004), 1517–1523, 10.1039/B410643A.
32. Lafuente, B., Downs, R.T., Yang, H., Stone, N., The power of databases: the RRUFF project. Highlights in Mineralogical Crystallography, 2016, 1–29, 10.1515/9783110417104-003.
33. Litasov, K.D., Podgornykh, N.M., Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite. J. Raman Spectrosc. 48 (2017), 1518–1527, 10.1002/jrs.5119.
34. Henke, B.L., Gullikson, E.M., Davis, J.C., X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z= 1-92. At. Data Nucl. Data Tables 54 (1993), 181–342, 10.1006/adnd.1993.1013.
35. Jochum, K.P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., Hofmann, A.W., GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res. 29 (2005), 333–338, 10.1111/j.1751-908X.2005.tb00904.x.
36. Pasteris, J.D., Wopenka, B., Valsami-Jones, E., Bone and tooth mineralization: why apatite?. Elements 4 (2008), 97–104, 10.2113/GSELEMENTS.4.2.97.
37. Chen, X., Jin, X., Tan, J., Li, W., Chen, M., Yang, H., Large-scale synthesis of water-soluble luminescent hydroxyapatite nanorods for security printing. J. Colloid Interface Sci. 468 (2016), 300–306, 10.1016/j.jcis.2016.01.078.
38. Cai, C., Zhao, M., Yu, Z., Rong, H., Zhang, C., Utilization of nanomaterials for in-situ remediation of heavy metal[loid] contaminated sediments: a review. Sci. Total Environ. 662 (2019), 205–217, 10.1016/j.scitotenv.2019.01.180.
39. Floor, G.H., Queralt, I., Hidalgo, M., Margui, E., Measurement uncertainty in Total reflection X-ray fluorescence. Spectrochim. Acta B 111 (2015), 30–37, 10.1016/j.sab.2015.06.015.
|