Инд. авторы: Maltsev A.S., Ivanov A.V., Pashkova G.V., Marfin A.E., Bishaev Y.A.
Заглавие: New prospects to the multi-elemental analysis of single microcrystal of apatite by total-reflection X-ray fluorescence spectrometry
Библ. ссылка: Maltsev A.S., Ivanov A.V., Pashkova G.V., Marfin A.E., Bishaev Y.A. New prospects to the multi-elemental analysis of single microcrystal of apatite by total-reflection X-ray fluorescence spectrometry // SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY. - 2021. - Vol.184. - Art.106281. - ISSN 0584-8547.
Внешние системы: DOI: 10.1016/j.sab.2021.106281; РИНЦ: 47028792; WoS: 000701913100004;
Реферат: eng: The elemental analysis of apatite minerals is an important study that is utilized in several applications in geology, biology, medicine, agriculture, technology, and environmental remediation. Laser ablation inductively coupled mass spectrometry (LA-ICP-MS) is a routine method for the elemental analysis of apatite microcrystals in geological applications. In this study, we propose a new method for the analysis of single grain of apatite with a mass of a few mu g using total-reflection X-ray fluorescence spectrometry (TXRF), which is faster, cheaper, and easier in quantification procedure than LA-ICP-MS. The direct preparation of the single apatite microcrystal on the quartz carrier using nitric acid digestion and quantification using the stoichiometric value of P as an internal standard allows to obtain the major, minor, and trace elements (from K to U) simultaneously. For the choice of the internal standard in TXRF, the Raman spectroscopy is applied to obtain the information of the mineral phases and their distribution formed in the apatite sample after the digestion procedure. Validation of the proposed TXRF method is conducted by the analysis of reference materials (Durango and Otter Lake) and comparison of results with the TXRF for bulk-type of apatite and LA-ICP-MS methods.
Ключевые слова: TXRF; LA-ICPMS; RARE-EARTH-ELEMENTS; Raman spectroscopy; LA-ICP-MS; Microcrystal; Apatite; TXRF; TRACK DATING METHODS; ZIRCON;
Издано: 2021
Физ. характеристика: 106281
Цитирование: 1. Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., Fisher, N.I., Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J. Geochem. Explor. 76 (2002), 45–69, 10.1016/S0375-6742(02)00204-2. 2. O'Sullivan, G., Chew, D.M., Kenny, G., Henrichs, I., Mulligan, D., The trace element composition of apatite and its application to detrital provenance studies. Earth Sci. Rev., 531, 2020, 103044, 10.1016/j.earscirev.2019.103044. 3. von Eynatten, H., Dunkl, I., Assessing the sediment factory: the role of single grain analysis. Earth Sci. Rev. 115 (2012), 97–120, 10.1016/j.earscirev.2012.08.001. 4. Cogne, N., Chew, D., Donelick, R., Ansberque, C., LA-ICP-MS apatite fission track dating: a practical zeta-based approach. Chem. Geol., 531, 2020, 119302, 10.1016/j.chemgeo.2019.119302. 5. Gleadow, A.J.W., Fission-track dating methods: what are the real alternatives?. Nucl. Tracks 5 (1981), 3–14, 10.1016/0191-278X(81)90021-4. 6. Thompson, J., Meffre, S., Maas, R., Kamenetsky, V., Kamenetsky, M., Goemann, K., Ehrig, K., Danyushevsky, L., Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite. J. Anal. At. Spectrom. 31 (2016), 1206–1215, 10.1039/C6JA00048G. 7. Teiber, H., Marks, M.A.W., Arzamastsev, A.A., Wenzel, T., Markl, G., Compositional variation in apatite from various host rocks: clues with regards to source composition and crystallization conditions. J. Mineral. Geochem. 192 (2015), 151–167, 10.1127/njma/2015/0277. 8. Chew, D.M., Babechuk, M.G., Cogne, N., Mark, C., O'Sullivan, G.J., Henrichs, I.A., Doepke, D., Mckenna, C.A., [LA, Q]-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards. Chem. Geol. 435 (2016), 35–48, 10.1016/j.chemgeo.2016.03.028. 9. Caulfield, J.T., Tomlinson, E.L., Chew, D.M., Marks, M.A.W., McKenna, C.A., Ubide, T., Smith, V.C., Microanalysis of Cl, Br and I in apatite, scapolite and silicate glass by LA-ICP-MS. Chem. Geol., 557, 2020, 119854, 10.1016/j.chemgeo.2020.119854. 10. Wudarska, A., Słaby, E., Wiedenbeck, M., Barnes, J.D., Bonifacie, M., Sturchio, N.C., Bardoux, G., Couffignal, F., Glodny, J., Heraty, L., John, T., Inter-laboratory characterisation of apatite reference materials for chlorine isotope analysis. Geostand. Geoanal. Res. 45 (2020), 121–142, 10.1111/ggr.12366. 11. Zhang, J., Lin, Y., Yang, W., Hao, J., Hu, S., Micro-scale [~10 mm] analyses of rare earth elements in silicate glass, zircon and apatite with NanoSIMS. Int. J. Mass Spectrom. 406 (2016), 48–54, 10.1016/j.ijms.2016.06.004. 12. Sitko, R., Zawisz, B., Czajain, M., Fundamental parameters method for determination of rare earth elements in apatites by wavelength-dispersive X-ray fluorescence spectrometry. J. Anal. At. Spectrom. 20 (2005), 741–745, 10.1039/B502994E. 13. Maltsev, A.S., Ivanov, A.V., Chubarov, V.M., Pashkova, G.V., Panteeva, S.V., Reznitskii, L.Z., Development and validation of a method for multielement analysis of apatite by total-reflection X-ray fluorescence spectrometry. Talanta, 214, 2020, 120870, 10.1016/j.talanta.2020.120870. 14. Klockenkämper, R., von Bohlen, A., Total-Reflection X-Ray Fluorescence Analysis and Related Methods. 2nd ed., 2015, Wiley, New York. 15. Menzel, M., Fittschen, U.E.A., Total reflection X-ray fluorescence analysis of airborne silver nanoparticles from fabrics. Anal. Chem. 86 (2014), 3053–3059, 10.1021/ac404017u. 16. Theisen, M., Niessner, R., Elemental analysis of airborne dust samples with TXRF: comparison of oxygen-plasma ashing on sapphire carriers and acid digestion for sample preparation. Fresenius J. Anal. Chem. 365 (1999), 332–337, 10.1007/s002160051496. 17. Spanke, J., von Bohlen, A., Klockenkämper, R., Quentmeier, A., Klockow, D., Total reflection X-ray fluorescence analysis of laser-deposited solid sample material. J. Anal. At. Spectrom. 15 (2000), 673–679, 10.1039/B001415J. 18. Vázquez, C., Custo, G., Barrio, N., Burucúa, J., Boeykens, S., Marte, F., Inorganic pigment study of the San Pedro Gonzalez Telmo Sibyls using total reflection X-ray fluorescence. Spectrochim. Acta B 65 (2010), 852–858, 10.1016/j.sab.2010.06.007. 19. Magalhães, T., Carvalho, M.L., von Bohlen, A., Becker, M., Study on trace elements behaviour in cancerous and healthy tissues of colon, breast and stomach: total reflection X-ray fluorescence applications. Spectrochim. Acta B 65 (2010), 493–498, 10.1016/j.sab.2010.04.001. 20. Mages, M., Bandow, N., Küster, E., Brack, W., von Tümpling, W., Zinc and cadmium accumulation in single zebrafish (Danio rerio) embryos—a total reflection X-ray fluorescence spectrometry application. Spectrochim. Acta B 63 (2008), 1443–1449, 10.1016/j.sab.2008.10.015. 21. Woelfl, S., Mages, M., Mercado, S., Villalobos, L., Óvári, M., Encina, F., Determination of trace elements in planktonic microcrustaceans using total reflection X-ray fluorescence (TXRF): first results from two Chilean lakes. Anal. Bioanal. Chem. 378 (2004), 1088–1094, 10.1007/s00216-003-2273-7. 22. Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A., Maas, R., Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst., 11, 2010, 10.1029/2009GC002618 Q0AA06. 23. Marks, M.A.W., Wenzel, T., Whitehouse, M.J., Loose, M., Zack, T., Barth, M., Worgard, L., Krasz, V., Nelson Eby, G., Stosnach, H., Markl, G., The volatile inventory [F, Cl, Br, S, C] of magmatic apatite: an integrated analytical approach. Chem. Geol. 291 (2012), 241–255, 10.1016/j.chemgeo.2011.10.026. 24. Yang, Y., Wu, F.-Y., Yang, J.-H., Chew, D.M., Xie, L.-W., Chu, Z.-Y., Zhang, Y.-B., Huang, C., Sr and Nd isotopic compositions of apatite reference materials used in U–Th–Pb geochronology. Chem. Geol. 385 (2014), 35–55, 10.1016/j.chemgeo.2014.07.012. 25. Kraml, M., Pik, R., Rahn, M., Selbekk, R., Carignan, J., Keller, J., A new multi-mineral age reference material for 40Ar/39Ar,(U-Th)/He and fission track dating methods: the Limberg t3 Tuff. Geostand. Geoanal. Res. 30 (2006), 73–86, 10.1111/j.1751-908X.2006.tb00914.x. 26. Green, P.F., Comparison of zeta calibration baselines for fission-track dating of apatite, zircon and sphene. Chem. Geol. Isot. Geosci. Sect. 58 (1985), 1–22, 10.1016/0168-9622(85)90023-5. 27. Hasebe, N., Tamura, A., Arai, S., Zeta equivalent fission-track dating using LA-ICP-MS and examples with simultaneous U–Pb dating. Island Arc 22 (2013), 280–291, 10.1111/iar.12040. 28. De Grave, J., De Pelsmaeker, E., Zhimulev, F.I., Glorie, S., Buslov, M.M., Van den haute, P., Meso-Cenozoic building of the northern Central Asian Orogenic Belt: Thermotectonic history of the Tuva region. Tectonophysics 621 (2014), 44–59, 10.1016/j.tecto.2014.01.039. 29. Ardhaoui, K., Solution enthalpies of calcium fluorapatite in nitric acid and in pure water. Physicochem. Probl. Miner. Process., 56, 2020, 10.37190/ppmp/120798. 30. Horntrich, C., Kregsamer, P., Wobrauschek, P., Streli, C., Considerations on the ideal sample shape for Total Reflection X-ray Fluorescence Analysis. Spectrochim. Acta B 66 (2011), 815–821, 10.1016/j.sab.2011.11.003. 31. Hellin, D., Fyen, W., Rip, J., Delande, T., Mertens, P.W., De Gendt, S., Vinckier, C., Saturation effects in TXRF on micro-droplet residue samples. Anal. At. Spectrom. 19 (2004), 1517–1523, 10.1039/B410643A. 32. Lafuente, B., Downs, R.T., Yang, H., Stone, N., The power of databases: the RRUFF project. Highlights in Mineralogical Crystallography, 2016, 1–29, 10.1515/9783110417104-003. 33. Litasov, K.D., Podgornykh, N.M., Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite. J. Raman Spectrosc. 48 (2017), 1518–1527, 10.1002/jrs.5119. 34. Henke, B.L., Gullikson, E.M., Davis, J.C., X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z= 1-92. At. Data Nucl. Data Tables 54 (1993), 181–342, 10.1006/adnd.1993.1013. 35. Jochum, K.P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., Hofmann, A.W., GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res. 29 (2005), 333–338, 10.1111/j.1751-908X.2005.tb00904.x. 36. Pasteris, J.D., Wopenka, B., Valsami-Jones, E., Bone and tooth mineralization: why apatite?. Elements 4 (2008), 97–104, 10.2113/GSELEMENTS.4.2.97. 37. Chen, X., Jin, X., Tan, J., Li, W., Chen, M., Yang, H., Large-scale synthesis of water-soluble luminescent hydroxyapatite nanorods for security printing. J. Colloid Interface Sci. 468 (2016), 300–306, 10.1016/j.jcis.2016.01.078. 38. Cai, C., Zhao, M., Yu, Z., Rong, H., Zhang, C., Utilization of nanomaterials for in-situ remediation of heavy metal[loid] contaminated sediments: a review. Sci. Total Environ. 662 (2019), 205–217, 10.1016/j.scitotenv.2019.01.180. 39. Floor, G.H., Queralt, I., Hidalgo, M., Margui, E., Measurement uncertainty in Total reflection X-ray fluorescence. Spectrochim. Acta B 111 (2015), 30–37, 10.1016/j.sab.2015.06.015.