Инд. авторы: Karmysheva I.V., Vladimirov V.G., Rudnev S.N., Yakovlev V.A., Semenova D.V.
Заглавие: Syntectonic metamorphism of a collisional zone in the Tuva-Mongolian massif, Central Asian Orogenic belt: P-T conditions, U-Pb ages and tectonic setting
Библ. ссылка: Karmysheva I.V., Vladimirov V.G., Rudnev S.N., Yakovlev V.A., Semenova D.V. Syntectonic metamorphism of a collisional zone in the Tuva-Mongolian massif, Central Asian Orogenic belt: P-T conditions, U-Pb ages and tectonic setting // Journal of Asian Earth Sciences. - 2021. - Vol.220. - Art.104919. - ISSN 1367-9120. - EISSN 1878-5786.
Внешние системы: DOI: 10.1016/j.jseaes.2021.104919; РИНЦ: 47017809; WoS: 000701863900002;
Реферат: eng: Accretionary-collisional events occurred at the western margin of the Tuva-Mongolian microcontinent are used to explain the largely contradictory Cambrian geodynamic history of the western Central Asian Orogenic Belt (CAOB). This study presents new data for the Erzin metamorphic complex in order to constrain the petrogenesis and tectonic implications of the metamorphic rocks in this complex. The Erzin complex in the tectonic Erzin zone is composed of high-grade metamorphic rocks that have formed under variable metamorphic conditions (T = 730-835 degrees C, P = 5.3-7.5 kbar). In the Erzin complex, metamorphic rocks have undergone multiple stages of ductile deformation with subvertical mineral lineation and were then superimposed by sub-horizontal ductile deformation. The stages of tectonic deformation are close in time and mark collisional stages characterized by a sequential change from the compression regime to the extension regime in the period of 495 +/- 5 Ma. The determination of the time interval is based on structural and petrological data, previously published materials, as well as the dating of granite dikes (U-Pb, zircon) sealing the Erzin complex. P-T conditions and structuralpetrological studies analysed in this paper suggest that the formation of the Erzin metamorphic complex occurred as a result of a collisional event between the Tannuola island arc and Tuva-Mongolian microcontinent. We suggest that the Erzin metamorphic complex is important for study of transitional regime between the collisional event and initial orogenic collapse in the ancient fold belts. Metamorphic record of the TuvaMongolian microcontinent provides important information about the processes that occurred at the Early Paleozoic geodynamic evolution in the western CAOB.
Ключевые слова: Shear zone; Tuva-Mongolian massif; SANGILEN; MODEL; EXHUMATION; EVOLUTION; NE CHINA; ISLAND-ARC; CONTINENTAL GROWTH; REGIONAL METAMORPHISM; TEMPERATURE TIME PATHS; HIGH-PRESSURE GRANULITES; Syncollisional metamorphism;
Издано: 2021
Физ. характеристика: 104919
Цитирование: 1. Berman, R.G., Aranovich, L.Y., Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contrib. Miner. Petrol. 126 (1996), 1–24. 2. Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S., Foudoulis, C., Improved Pb-206/U-218 microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, LA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 205 (2004), 115–140. 3. Bodorkos, S., Sandiford, M., Oliver, N.H.S., Cawood, A., High-T, low-P metamorphism in the Paleoproterozoic Halls Creek Orogen, northern Australia: the middle crustal response to a mantle-related transient thermal pulse. J. Metamorph. Geol. 20 (2002), 217–237. 4. Brown, M., Solar, G., Granite ascent and emplacement during contractional deformation in convergent orogens. J. Struct. Geol. 20 (1998), 1365–1393. 5. Buslov, M.M., Saphonova, I.Y., Watanabe, T., Obut, O.T., Fujiwara, Y., Iwata, K., Semakov, N.N., Sugai, Y., Smirnova, L.V., Kazansky, A.Y., Itaya, T., Evolution of the Paleo-Asian Ocean (Altai-Sayan, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. J. Geosci. 5 (2001), 203–224. 6. Buslov, M.M., Watanabe, T., Fujiwara, Y., Iwata, K., Smirnova, L.V., Safonova, I.Y., Semakov, N.N., Kiryanova, A.P., 2004. Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation. J. Asian Earth Sci. 23, 655–671. 7. Clemens, J.D., Vielzeuf, D., Constraints on melting and magma production in the crust. Earth Planet. Sci. Lett. 86 (1987), 287–306. 8. Collins, W.J., Vernon, R.H., 1991. Orogeny associated with anticlockwise P–T–t paths: evidence from low-P, high-T metamorphic terranes in the Arunta inlier, central Australia. Geology, 19, 835–838. 9. Costamagna, L.G., Elter, F.M., Gaggero, L., Mantovani, F., 2016. Contact metamorphism in Middle Ordovician arc rocks (SW Sardinia, Italy): New paleogeographic constraints. Lithos, 264, 577-593. 10. De Yoreo, J., Lux, D., Guidotti, C., 1989. The role of crustal anatexis and magma migration in the thermal evolution of regions of thickened continental crust. In: Evolution of Metamorphic Belts (eds Daly, J. S., Cliff, R. A. & Yardley, B. W. D.). Geological Society Special Publication, 43, 187–202. 11. Dirks, P.H.G.M., Zhang, J.S., Passchier, C.W., Exhumation of high-pressure granulites and the role of lower crustal advection in the North China Craton near Datong. J. Struct. Geol. 19:10 (1997), 1343–1358. 12. Dobretsov, N.L., Problems of tectonics and metamorphism. Petrology 3 (1995), 4–23 (in Russian). 13. Dobretsov, N.L., Berzin, N.A., Buslov, M.M., 1995. Opening and tectonic evolution of the Paleo-Asian Ocean. Int. Geol. Rev. 37, 335–360. 14. Druguet, E., 2001. Development of high thermal gradients by coeval transpression and magmatism during the Variscan orogeny: insights from the Cap de Creus (Eastern Pyrenees). Tectonophysics, 332, 275-293. 15. England, P.C., Thompson, A.B., 1984. Pressure-temperature-time paths of regional metamorphism: I. Heat transfer during the evolution of regions of thickened continental crust. J. Petrology, 25, 4, 894-928. 16. Eyal, Y., Eyal, M., Litvinovsky, B., Jahn, B.-M., Calvo, R., Golan, T., 2019. The evolution of the Neoproterozoic Elat Metamorphic Complex, northernmost Arabian-Nubian Shield: Island arc to syncollisional stage and post-collisional magmatism. Precambrian Research, 320, 137-170. 17. Flood, R.H., Vernon, R.H., 1978. The Cooma Granodiorite, Australia: an example of in situ crustal anatexis?. Geology, 6, 81–84. 18. Franek, J., Schulmann, K., Lexa, O., Kinematic and rheological model of exhumation of high pressure granulites in the Variscan orogenic root: example of the Blanský les granulite, Bohemian Massif, Czech Republic. Mineral. Petrol. 86 (2006), 253–276. 19. Gibsher, A.S., Gibsher, A.A., Malkovets, V.G., Shelepaev, R.A., Terleev, A.A., Sukhorukov, V.P., Rudnev, S.N., 2017. Nature and age of high-pressure (kyanite) metamorphism in Western Sangilen (South-East Tuva). «Geodynamic settings and thermodynamic conditions of regional metamorphism in the Precambrian and the Phanerozoic»: Proceedings of V Russian Conference on Precambrian Geology and Geodynamics. St. Petersburg, IPGG RAS, Sprinter, 52-53 (in Russian). 20. Gordon, S.M., Whitney, D.L., Miller, R.B., McLean, N., Seaton, N.C.A., Metamorphism and deformation at different structural levels in a strike-slip fault zone, Ross Lake fault, North Cascades, USA. J. Metamorph. Geol. 28 (2010), 117–136. 21. Harley, S.L., The origin of granulites: a metamorphic perspective. Geol. Mag. 126 (1989), 215–231. 22. Hauzenberger, C.A., Mogessie, A., Hoinkes, G., Felfernig, A., Bjerg, E.A., Kostadinoff, J., Delpino, S., Dimieri, L., Metamorphic evolution of the Sierras de San Luis, Argentina: granulite facies metamorphism related to mafic intrusions. Mineral. Petrol. 71 (2001), 95–126. 23. He, Z., Zhang, Z., Zong, K., Xiang, H., Klemd, R., Metamorphic P-T–t evolution of mafic HP granulites in the northeastern segment of the Tarim Craton (Dunhuang block): Evidence for early Paleozoic continental subduction. Lithos 196–197 (2014), 1–13. 24. Henry, P., Le Pishon, X., Goffe, B., Kinematics, thermal and petrological model of the Himalayas: constrains related to metamorphism within the underthrust Indian crust and topographic elevation. Tectonophysics 273 (1997), 31–56. 25. Izokh, A.E., Kargopolov, S.A., Shelepaev, R.A., Travin, A.V., Egorova, V.V., Cambrian-Ordivician basite magmatism of Altai-Sayan region and associated HT/LP-type metamorphism. Actual problems of geology and minerageny of Southern Siberia: Proceedings. Novosibirsk, 2001, 68–72 (in Russian). 26. Jahn, B., Wu, F., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans. Roy. Soc. Edinburgh 91, 181–193. 27. Kargopolov, S.A., Low-depth granulites of Western Sangilen (South-Eastern Tuva). Author's PhD thesis of Earth science. Novosibirsk, 17, 1997 (in Russian). 28. Karmysheva, I.V., Vladimirov, V.G., Vladimirov, A.G., Synkinematic granitoid magmatism of Western Sangilen, South-East Tuva. Petrology 25:1 (2017), 87–113. 29. Karmysheva, I.V., Vladimirov, V.G., Volkova, N.I., Vladimirov, A.G., Kruk, N.N., Two types of high-grade metamorphism in West Sangilen (Southeast Tuva). Dokl. Earth Sci. 441:1 (2011), 1546–1551. 30. Karmysheva, I.V., Vladimirov, V.G., Shelepaev, R.A., Rudnev, S.N., Yakovlev, V.A., Semenova, D.V., Bayan-Kol gabbro-granite association (Western Sangilen, Southeastern Tuva): composition, age boundaries, and tectonic and geodynamic settings. Russ. Geol. Geophys. 60:7 (2019), 720–734. 31. Klaver, M., de Roever, E.W.F., Nanne, J.A.M., Mason, P.R.D., Davies, G.R., Charnockites and UHT metamorphism in the Bakhuis Granulite Belt, western Suriname: Evidence for two separate UHT events. Precambr. Res. 262 (2015), 1–19. 32. Korhonen, F.J., Brown, M., Grove, M., Siddoway, C.S., Baxter, E.F., Inglis, J.D., Separating metamorphic events in the Fosdick migmatite–granite complex, West Antarctica. J. Metamorph. Geol. 30 (2012), 165–191. 33. Korikovsky, S.P., Contrast models of prograde-retrograde evolution of Phanerozoic folded belts metamorphism in collision and subduction zones. Petrology 3:1 (1995), 45–63 (in Russian). 34. Kozakov, I.K., Precambrian infrastructural complexes of the Paleozoids of Mongolia. Leningrad. Nauka., 144, 1986 (in Russian). 35. Kozakov, I.K., Kotov, A.B., Sal'nikova, E.B., Bibikova, E.V., Kovach, V.P., Kirnozova, T.I., Berezhnaya, N.G., Lykhin, D.A., 1999. Metamorphic age of crystalline complexes of the Tuva–Mongolia Massif: the U–Pb geochronology of granitoids. Petrology. 7 (2), 174–190. (in Russian). 36. Kozakov, I.K., Kotov, A.B., Sal'nikova, E.B., Kovach, V.P., Natman, A., Bibikova, E.V., Kirnozova, T.I., Todth, V., Krener, A., Yakovleva, S.Z., Lebedev, V.I., Sugorakova, A.M., 2001. Timing of the structural evolution of metamorphic rocks in the Tuva–Mongolian Massif. Geotectonics, 35 (3), 22-43. (in Russian). 37. Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A., Sun, M., 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res. 25, 103–125. 38. Kuzmichev, A., 2004. Tectonic history of the Tuva-Mongolian massif: Early Baikalian, Late Baikalian and Early Caledonian stages. Ed. by E.Sklyarov. Moscow. PROBEL-2000. 192. (in Russian). 39. Kuzmichev, A.B., Bibikova, E.V., Zhuravlev, D.Z., Neoproterozoic (similar to 800 Ma) orogeny in the Tuva-Mongolia Massif (Siberia): island arc-continent collision at the northeast Rodinia margin. Precambr. Res. 110:1–4 (2001), 109–126. 40. Lepezin, G.G., Metamorphic complexes of Altai-Sayan folded belt. Novosibirsk, Publishing Science, 1978 231 p (in Russian). 41. Likhanov, I.I., Polyansky, O.P., Reverdatto, V.V., Memmi, I., Evidence from Fe- and Al-rich metapelites for thrust loading in the Transangarian region of the Yenisey Ridge, eastern Siberia. J. Metamorph. Geol. 22 (2004), 743–762. 42. Lister, G.S., Snoke, A.W., S-C mylonites. J. Struct. Geol. 2 (1980), 335–370. 43. Liu, Z., Bartoli, O., Tong, L., Xu, Y.-G., Huang, X. 2020. Permian ultrahigh-temperature reworking in the southern Chinese Altai: Evidence from petrology, P-T estimates, zircon and monazite U-Th-Pb geochronology. Gondwana Res., 78, 20-40. 44. Ludwing, K., User's Manual for Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, CA 4 (2003), 41–70. 45. Lux, D.R., De Yoreo, J.J., Guidotti, C.V., Decker, E.R., Role of plutonism in low-pressure metamorphic belt formation. Nature 323 (1986), 794–797. 46. Mao, L.-J., He, Z.-Y., Zhang, Z.-M., Klemd, R., Xiang, H., Tian, Z.-L., Zong, K.-Q., Origin and geodynamic significance of the early Mesozoic Weiya LP and HT granulites from the Chinese Eastern Tianshan. Lithos 239 (2015), 142–156. 47. Mitrofanov, F.P., Kozakov, I.K., Palei, I.P., Precambrian of Western Mongolia and South Tuva. Leningrad, Publishing Science, 156, 1981, p (in Russian). 48. Mossakovsky, A.A., Ruzhentsev, S.V., Samygin, S.G., Kheraskova, T.N., Central Asian fold belt: geodynamic evolution and history of formation. Geotektonika 6 (1993), 3–33 (in Russian). 49. Passchier, C.W., Trouw, R.A.J., Microtectonics. 1996, Springer-Verlag, Berlin Heidelberg, 289. 50. Pearce, M.A., Wheeler, J., Modelling grain-recycling zoning during metamorphism. J. Metamorphic Geology 28 (2010), 423–437. 51. Platt, J.P., Exhumation of high-pressure rocks: a review of concepts and processes. Terra Nova 5 (1993), 119–133. 52. Reverdatto, V.V., Likhanov, I.I., Polyansky, O.P., Sheplev, V.S., Kolobov, V.Yu., The Nature and Models of Metamorphism. 2019, Springer Geology, 329. 53. Rusin, A.I., Ural metamorphic complexes and problem of metamorphism evolution in the full cycle of mobile belts lithosphere developmental. Author's Doctor of Geological and Mineralogical Sciences thesis. Ekaterinburg, 46, 2004 (in Russian). 54. Rusin, A.I., 2007. High-pressure metamorphism of Ural. Geodynamics, magmatism, metamorphism and ore formation. Ekaterinburg, IGG UB RAN, 421-460. 55. Sandiford, M., Hand, M., McLaren, S., High geothermal gradient metamorphism during thermal subsidence. Earth Planet. Sci. Lett. 163 (1998), 149–165. 56. Sandiford, M., Martin, N., Shaohua, Z., Fraser, G., Mechanical consequences of granite emplacement during high-T, low-P metamorphism and the origin of anticlockwise P-T paths. Earth Planet. Sci. Lett. 107 (1991), 164–172. 57. Schulmann, K., Lexa, O., Štĭpskă, P., Racek, M., Tajčmanovă, L., Konopăsek, J., Edel, J.-B., Peschler, A., Lenmann, J., Vertical extrusion and horizontal channel flow of orogenic lower crust: key exhumation mechanisms in large hot orogens?. J. Metamorph. Geol. 26 (2008), 273–297. 58. Sengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364, 299–307. 59. Shelepaev, R.A., Evolution of basic magmatism of Western Sangilen (South-Eastern Tuva). Author's PhD thesis of Earth science. Novosibirsk, 16, 2006 (in Russian). 60. Slama, J., Kosler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, N., Tubrett, M.N., Whitehouse, M.J., Plesovice zircon - a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 249:1–2 (2008), 1–35. 61. Spear, F.S., Metamorphic phase equilibria and pressure-temperature-time paths. 1993, Mineralogical Society of America Publication, BookCrafters, Washington, D.C, 799. 62. Thiessen, E.J., Gibson, H.D., Regis, D., Pehrsson, S.J., Deformation and extensional exhumation of 1.9 Ga high-pressure granulites along the Wholdaia Lake shear zone, south Rae craton, Northwest Territories, Canada. Lithosphere 10:5 (2018), 641–661. 63. Thompson, A.B., 1990. Heat, fluids, and melting in the granulite facies. Granulites and Crustal Evolution, (eds. Vielzeuf, D., Vidal, Ph.NATO ASI Series, Series C). Kluwer. Dordrecht, 311, 37-58. 64. Thompson, A.B., England, P.C., 1984. Pressure-temperature-time paths of regional metamorphism II. Their inference and interpretation using mineral assemblages in metamorphic rocks. J. Petrology, 25, 929-955. 65. Van der Pluijm Ben, A., Marshak, S., 2004. Earth structure: an introduction to structural geology and tectonics (Second edition). New-York – London: W.W. Norton&Company, 656 p. 66. Vigneresse, J.L., Barbey, P., Cuney, M., Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. J. Petrol. 37 (1996), 1597–1600. 67. Vladimirov, V.G., The contact deformation of Mugur formation metamorphic rocks in interfluve Moren river and Solcher river (South-Western Sangilen). Complex geological researches of Sangilen (South-Easten Tuva). Compilation of scientific papers. 1987, IGG SB AN USSR, Novosibirsk 67–88 (in Russian). 68. Vladimirov, V.G., Karmysheva, I.V., Yakovlev, V.A., Travin, A.V., Tzygankov, A.A., Burmakina, G.N., Thermochronology of the mingling-dykes of the Western Sangilen (South-East Tuva): evidence to the collapse of the collisional system in the North-Western edge on the Tuva-Mongolian massif. Geodynamics Tectonophys. 8:2 (2017), 283–310 (in Russian). 69. Vladimirov, V.G., Vladimirov, A.G., Gibsher, A.S., Travin, A.V., Rudnev, S.N., Shemelina, I.V., Barabash, N.V., Savinykh, Ya.V., 2005. Model of the Tectonometamorphic Evolution for the Sangilen Block (Southeastern Tuva, Central Asia) as a Reflection of the Early Caledonian Accretion–Collision Tectogenesis. Doklady Earth Sci., 405 (8), 1159–1165. 70. Wells, P.R.A., Thermal models for the magmatic accretion and subsequent metamorphism of continental crust. Earth Planet. Sci. Lett. 46 (1980), 253–265. 71. Windley, B.F., Alexeiev, D., Xiao, W., Kroner, A., Badarch, G., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geological Soc. London. 164, 31–47. 72. Winslow, D.M., Zeitler, P.K., Chamberlain, C.P., Hollister, L.S., Direct evidence for a steep geotherm under conditions of rapid denudation, Western Himalaya, Pakistan. Geology 22 (1994), 1075–1078. 73. Xiao, W., Huang, B., Han, C., Sun, S., Li, J., 2010. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Res. 18 (2–3), 253–273. 74. Xiao, W., Santosh, M., 2014. The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Res. 25, 1429–1444. 75. Yakubchuk, A.S., 2004. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model. J. Asian Earth Sci. 23, 761–779. 76. Yang, H., Ge, W.-C., Bi, J.-H., Wang, Z.-H., Tian, De-X., Dong, Yu, Chen, H.-J., 2018. The Neoproterozoic-early Paleozoic evolution of the Jiamusi Block, NE China and its East Gondwana connection: Geochemical and zircon, U–Pb–Hf isotopic constraints from the Mashan Complex. Gondwana Res., 54, 102–121. 77. Zhang, J., Wei, C., Chu, H., Multiple metamorphic events recorded in the metamorphic terranes in Central Inner Mongolia, Northern China: Implication for the tectonic evolution of the Xing'an-Inner Mongolia Orogenic Belt. J. Asian Earth Sci. 167 (2018), 52–67. 78. Zhou, J.-B., Wilde, S.A., Zhang, X.-Z., Zhao, G.-C., Liu, F.-L., Qiao, D.-W., Ren, S.-M., Liu, J.-H., A >1300 km late Pan-African metamorphic belt in NE China: New evidence from the Xing'an block and its tectonic implications. Tectonophysics 509 (2011), 280–292. 79. Zonenshain, L.P., Kuzmin, M.I., Natapov, L.M., Geology of the USSR: plate tectonic synthesis. Am. Geophys. Union. Geodyn. Ser. Monograph, 1990, 21.