Инд. авторы: Bekker T.B., Yelisseyev A.P., Solntsev V.P., Davydov A.V., Inerbaev T.M., Rashchenko S.V., Kostyukov A.I.
Заглавие: The influence of co-doping on the luminescence and thermoluminescence properties of Cu-containing fluoride borate crystals
Библ. ссылка: Bekker T.B., Yelisseyev A.P., Solntsev V.P., Davydov A.V., Inerbaev T.M., Rashchenko S.V., Kostyukov A.I. The influence of co-doping on the luminescence and thermoluminescence properties of Cu-containing fluoride borate crystals // Crystengcomm. - 2021. - Vol.23. - Iss. 37. - P.6599-6609. - ISSN 1466-8033.
Внешние системы: DOI: 10.1039/d1ce00556a; РИНЦ: 47105793; WoS: 000692836400001;
Реферат: eng: The results of this study provide data on the luminescence and thermoluminescence properties of fluoride borate Ba-12(BO3)(6)[BO3][LiF4] crystals co-doped with copper, rare earth elements, and strontium. The crystals were grown from high temperature solutions. This study revealed a considerable difference in decay time: about 60 ns for Cu+ photoluminescence at 412 nm in Ba-12(BO3)(6)[BO3][LiF4]:Cu crystals after excitation at 263 nm, and about 1.8 ms for Eu3+ photoluminescence at 612 nm in Ba-12(BO3)(6)[BO3][LiF4]:Cu,Eu crystals after excitation at 300, 325, and 395 nm. The absence of short-wavelength luminescence of Cu+ centers in photoluminescence spectra under 325 nm excitation in Ba-12(BO3)(6)[BO3][LiF4]:Cu,Eu and Ba-12(BO3)(6)[BO3][LiF4]:Cu,Eu,Tb,Ce crystals is associated with the nonradiative energy transfer from the excited electronic state of Cu+ ions to the energy levels of the rare earth elements. The thermoluminescence curves of these crystals lack a peak associated with capture centers. Co-doping with copper and strontium (Ba-12(BO3)(6)[BO3][LiF4]:Cu,Sr, P4(2)/mbc, a = 13.5174 (3) angstrom, c = 14.9399 (3) angstrom) has a noticeable effect on both photo- and thermoluminescence properties. This fosters the formation of deeper capture centers and promotes an increase in the temperature interval between thermoluminescence peaks, which is essential for the stable storage of dosimetric information. First-principles density functional theory investigation indicates that the presence of monovalent copper ions narrows the bandgap width compared to that of undoped Ba-12(BO3)(6)[BO3][LiF4] crystals due to the transitions from the Cu-3d to Ba-5d levels. The presence of bivalent copper in the structure results in unfilled defect levels inside the bandgap. This contributes to the absorption in the visible range due to the electronic transitions from the O-2p to Cu-3d levels.
Ключевые слова: SILVER; SPECTRA; DETECTORS; SENSITIVITY; EU3+ IONS; SINGLE-CRYSTALS; MANGANESE; DECAY;
Издано: 2021
Физ. характеристика: с.6599-6609
Цитирование: 1. D. V. Ananchenko, S. V. Nikiforov, S. F. Konev, G. R. Ramazanova, Opt. Mater. 2019, 90, 118, 122 2. S. V. Zvonarev, V. Y. Churkin, V. A. Pankov, A. V. Abramov, S. V. Nikiforov, Radiat. Meas. 2020, 136, 106410 3. L. Freire, A. Calado, J. V. Cardoso, L. M. Santos, J. G. Alvesm, Radiat. Meas. 2008, 43, 646, 650 4. M. Moscovitch, Radiat. Prot. Dosim. 1999, 85, 49, 56 5. A. A. Shalaev, N. S. Bobina, A. S. Paklin, R. Y. Shendrik, A. I. Nepomnyashchikh, Bull. Russ. Acad. Sci.: Phys. 2015, 79, 263, 266 6. M. Lüpke, F. Goblet, B. Polivka, H. Seifert, Radiat. Prot. Dosim. 2006, 121, 195, 201 7. A. I. Nepomnyachikh, V. G. Chernov, B. I. Rogalev, Radiat. Prot. Dosim. 1990, 33, 159, 162 8. M. Prokic, Radiat. Meas. 2001, 33, 393, 396 9. M. Ignatovych, V. Holovey, T. Vidoczy, P. Baranyai, A. Kelemen, Radiat. Phys. Chem. 2007, 76, 1527 10. M. Ignatovych, M. Fasoli, A. Kelemen, Radiat. Phys. Chem. 2012, 81, 1528, 1532 11. O. Annalakshmi, M. T. Jose, J. Sridevi, B. Venkatraman, G. Amarendra, A. B. Mandal, J. Lumin. 2014, 147, 284, 289 12. K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272, 1276 13. T. B. Bekker, S. V. Rashchenko, V. P. Solntsev, A. P. Yelisseyev, A. A. Kragzhda, V. V. Bakakin, Y. V. Seryotkin, A. E. Kokh, K. A. Kokh, A. B. Kuznetsov, Inorg. Chem. 2017, 56, 5411, 5419 14. V. Solntsev, T. Bekker, A. Davydov, A. Yelisseyev, S. Rashchenko, A. Kokh, V. Grigorieva, S.-H. Park, J. Phys. Chem. C, 2019, 123, 74469, 74474 15. T. Bekker, V. Solntsev, A. Yelisseyev, A. Davydov, S. Rashchenko, Cryst. Growth Des. 2020, 20, 4100, 4107 16. A. Rothkirch, G. Gatta, M. Meyer, S. Merkel, M. Merlini, H. Liermann, J. Synchrotron Radiat. 2013, 20, 711, 720 17. L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786, 790 18. V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. - Cryst. Mater. 2014, 229, 345, 352 19. G. Kresse, J. Furthmüller, Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169, 11186 20. G. Kresse, D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758, 1775 21. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865, 3868 22. J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207, 8215 23. P. E. Blochl, Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953, 17979 24. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys. Rev. B: Condens. Matter Mater. Phys. 1998, 57, 1505 25. T. B. Bekker, T. M. Inerbaev, A. P. Yelisseyev, V. P. Solntsev, S. V. Rashchenko, A. V. Davydov, A. F. Shatskiy, K. D. Litasov, Inorg. Chem. 2020, 59, 13598, 13606 26. C. Pedrini, B. Jacquier, Fluorescence of Cu+ in NaCl single crystals, J. Phys. C: Solid State Phys. 1980, 13, 4791 27. J. Simonetti, D. S. McClure, Phys. Rev. B: Solid State, 1977, 16, 3887 28. A. I. Nepomnyashchikh, A. A. Shalaev, A. K. Subanakov, A. S. Paklin, N. S. Bobina, A. S. Myasnikova, R. Y. Shendrik, Opt. Spectrosc. 2011, 111, 411, 414 29. G. Corradi, V. Nagirnyi, A. Kotlov, A. Watterich, M. Kirm, K. Polgár, A. Hofstaetter, M. Meyer, J. Phys.: Condens. Matter, 2007, 20, 025216 30. G. Corradi, V. Nagirnyi, A. Kotlov, A. Watterich, M. Kirm, K. Polgár, J. Phys.: Conf. Ser. 2010, 249, 012008 31. C. M. Reddy, B. D. P. Raju, N. J. Sushma, N. S. Dhoble, S. J. Dhoble, Renewable Sustainable Energy Rev. 2015, 51, 566, 584 32. K. Lemański, M. Stefański, D. Stefańska, P. J. Dereń, J. Lumin. 2015, 159, 219, 222 33. L. Szymanski, L. Michalski, B. Krukowska-Fulde, T. Niemyski, Mater. Res. Bull. 1970, 5, 523, 528 34. W. B. Im, S. Brinkley, J. Hu, A. Mikhailovski, S. V. DenBaars, R. Seshadri, Chem. Mater. 2010, 22, 2842, 2849 35. W. Ran, H. Mi Noh, S. H. Park, B. K. Moon, J. H. Jeong, J. H. Kim, Sci. Rep. 2018, 8, 5936 36. K. Smits, L. Grigorjeva, D. Millers, J. Fidelus, W. Lojkiwski, IEEE Trans. Nucl. Sci. 2008, 55, 1523, 1526 37. J. Kingsley, J. Prener, M. Aven, Phys. Rev. Lett. 1965, 14, 136 38. Q.-Y. Shang, B. S. Hudson, C. Huang, Spectrochim. Acta, 1991, 47, 291, 298