Цитирование: | 1. R. Bubnova, S. Filatov, High-temperature crystal chemistry of borates and borosilicates, Science, Saint Petersburg (2008).
2. Bubnova, R.S., Filatov, S.K., High-temperature borate crystal chemistry. Z. Kristallogr. Cryst. Mater. 228 (2013), 395–428.
3. Leonyuk, N.I., Maltsev, V.V., Volkova, E.A., Crystal chemistry of high-temperature borates. Molecules, 25, 2020, 2450.
4. Knyrim, J.S., Römer, S.R., Schnick, W., Huppertz, H., High-pressure synthesis and characterization of the alkaline earth borate β-BaB4O7. Solid State Sci. 11:2 (2009), 336–342.
5. Sohr, G., Ciaghi, N., Schauperl, M., Wurst, K., Liedl, K.R., Huppertz, H., High-pressure synthesis of Cd(NH3)2[B3O5(NH3)]2: pioneering the way to the substance class of ammine borates. Angew. Chem. Int. Ed. 54 (2015), 6360–6363.
6. Schmitt, M.K., Janka, O., Niehaus, O., Dresselhaus, T., Pöttgen, R., Pielnhofer, F., Weihrich, R., Krzhizhanovskaya, M., Filatov, S., Bubnova, R., Bayarjargal, L., Winkler, B., Glaum, R., Huppertz, H., Synthesis and characterization of the high-pressure nickel borate γ-NiB4O7. Inorg. Chem. 56:7 (2017), 4217–4228.
7. Schmitt, M.K., Podewitz, M., Liedl, K.R., Huppertz, H., High-pressure synthesis and characterization of the ammonium yttrium borate (NH4)YB8O14. Inorg. Chem. 56:22 (2017), 14291–14299.
8. Schmitt, M.K., Janka, O., Pöttgen, R., Benndorf, C., de Oliveira, M., Eckert, H., Pielnhofer, F., Tragl, A.-S., Weihrich, R., Joachim, B., Johrendt, D., Huppertz, H., Mo2B4O9—Connecting borate and metal-cluster chemistry. Angew. Chem. Int. Ed. 56 (2017), 6449–6453.
9. Vitzthum, D., Wurst, K., Pann, J.M., Brüggeller, P., Seibald, M., Huppertz, H., Exploration into the syntheses of gallium- and Indiumborates under extreme conditions: M5B12O25(OH): structure, luminescence, and surprising Photocatalytic properties. Angew. Chem. Int. Ed. 57 (2018), 11451–11455.
10. Glätzle, M., Pitscheider, A., Oeckler, O., Wurst, K., Huppertz, H., A high-pressure praseodymium fluoride borate linking multiple structural features of apatite-type compounds. Chemistry 25 (2019), 1767–1772.
11. Lu, J.Q., Lan, G.X., Li, B., Yang, Y.Y., Wang, H.F., Chang Wu, B., Raman scattering study of the single crystal β-BaB2O4 under high pressure. J. Phys. Chem. Solids 49 (1988), 519–527.
12. Lin, Y., Cai, Q., Lant, G., Wang, H., High-pressure Raman study of the β-BaB2O4 crystal and pressure-induced phase transitions. Spectrochim. Acta A 48:5 (1992), 653–657.
13. Dong, H., Oganov, A.R., Brazhkin, V.V., Wang, Q., Zhang, J., Davari Esfahani, M.M., Zhou, X.-F., Wu, F., Zhu, Q., Boron oxides under pressure: prediction of the hardest oxides. Phys. Rev. B, 98, 2018, 174109.
14. Osugi, J., Shimizu, K., Inoue, K., Yasunami, K., A compact cubic anvil high pressure apparatus. Rev. Phys. Chem. Jpn 34 (1964), 1–6.
15. Podborodnikov, I.V., Shatskiy, A., Arefiev, A.V., Bekhtenova, A., Litasov, K.D., New data on the system Na2CO3–CaCO3–MgCO3 at 6 GPa with implications to the composition and stability of carbonatite melts at the base of continental lithosphere. Chem. Geol. 515 (2019), 50–60.
16. Chen, C., Sasaki, T., Li, R., Wu, Y., Lin, Z., Mori, Y., Hu, Z., Wang, J., Aka, G., Yoshimura, M., Nonlinear Optical Borate Crystals: Principals and Applications. 2012, John Wiley & Sons.
17. Bekker, T.B., Rashchenko, S.V., Bakakin, V.V., Seryotkin, Yu.V., Fedorov, P.P., Kokh, A.E., Stonoga, S.Y., Phase formation in the BaB2O4–BaF2–BaO system and new non-centrosymmetric solid-solution series Ba7(BO3)4−xF2+3x. CrystEngComm, 14(20), 2012, 6910, 10.1039/c2ce26122g.
18. Bekker, T.B., Rashchenko, S.V., Seryotkin, Y.V., Kokh, A.E., Davydov, A.V., Fedorov, P.P., BaO−B2O3 system and its mysterious member Ba3B2O6. J. Am. Ceram. Soc. 101:1 (2018), 450–457.
19. Rashchenko, S.V., Bekker, T.B., Bakakin, V.V., Seryotkin, Y.V., Simonova, E.A., Goryainov, S.V., New fluoride borate with ‘anti-zeolite’ structure: a possible link to Ba3(BO3)2. J. Alloy. Compd. 694 (2017), 1196–1200.
20. Bekker, T.B., Solntsev, V.P., Yelisseyev, A.P., Rashchenko, S.V., Fluoride Borates with [(BO3)F]4– ↔ [F4]4– Anionic Isomorphism and X-ray Sensitivity. Cryst. Growth Des. 16:8 (2016), 4493–4499.
21. Bekker, T., Solntsev, V., Yelisseyev, A., Davydov, A., Rashchenko, S., Crystal chemical design of functional fluoride borates with “Antizeolite” structure. Cryst. Growth Des. 20:6 (2020), 4100–4107.
22. Rashchenko, S.V., Bekker, T.B., Bakakin, V.V., Seryotkin, Y.V., Kokh, A.E., Gille, P., Popov, A.I., Fedorov, P.P., A new mechanism of anionic substitution in fluoride borates. J. Appl. Crystallogr. 46:4 (2013), 1081–1084.
23. K. Hubner, Ueber die Borate 2BaO•5B2O3, tief-BaO• B2O3, 2BaO• B2O3 und 4BaO• B2O3, Neues Jahrb. Mineral., Monatsch (1969) 335-343.
24. Furmanova, N.G., Maksimov, B.A., Molchanov, V.N., Kokh, A.E., Kononova, N.G., Fedorov, P.P., Crystal structure of the new barium borate Ba5(BO3)2(B2O5). Crystallogr. Rep. 51:2 (2006), 219–224.
25. Mighell, A.D., Perloff, A., Block, S., The crystal structure of the high temperature form of barium borate, BaO.B2O3. Acta Crystallogr. 20:6 (1966), 819–823.
26. Solé, R., Nikolov, V., Pujol, M.C., Gavaldà, J., Ruiz, X., Massons, J., Aguiló, M., Dı́az, F., Stabilization of β-BaB2O4 in the system BaB2O4–Na2O–Nd2O3. J. Cryst. Growth 207:1-2 (1999), 104–111.
27. Meshalkin, A.B., Kaplun, A.B., Study of phase equilibria in system BaO–B2O3 from 32 to 67mol% B2O3. J. Cryst. Growth 275:1-2 (2005), e301–e305.
28. Liu, L., Yang, Y., Dong, X., Lei, C., Han, S., Pan, S., Ba2B6O11, a member of the BaO-B2O3 family, featuring a layer framework. Eur. J. Inorg. Chem. 2015:20 (2015), 3328–3335.
29. Block, S., Perloff, A., The crystal structure of barium tetraborate, BaO.2B2O3. Acta Crystallogr. 19:3 (1965), 297–300.
30. Stone-Sundberg, J., Keszler, D., Aka, G., Kahn-Harari, A., Reynolds, T., Nonlinear Optical Borate Crystal Ba2B10O17. 2001, SPIE.
31. Liu, L., Su, X., Yang, Y., Pan, S., Dong, X., Han, S., Zhang, M., Kang, J., Yang, Z., Ba2B10O17: a new centrosymmetric alkaline-earth metal borate with a deep-UV cut-off edge. Dalton Trans. 43 (2014), 8905–8910.
32. Robbins, C.R., Levin, E.M., Phase transformation in barium Tetraborate. J. Res. Natl. Bur. Stand. A, 73A(6), 1969, 615, 10.6028/jres.073A.048.
33. Krogh-Moe, J., Ihara, M., On the crystal structure of barium tetraborate, BaO.4B2O3. Acta Crystallogr. B 25:10 (1969), 2153–2154.
34. Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 1996, 3865.
35. Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations. Phys. Rev. B, 13, 1976, 5188.
36. Gerlach, Walther, Die gitterstruktur der erdalkalioxyde. Z. Phys. 9:1 (1922), 184–192.
37. Weir, S.T., Vohra, Y.K., Ruoff, A.L., High-pressure phase transitions and the equations of state of BaS and BaO. Phys. Rev. B 33:6 (1986), 4221–4226.
38. Effenberger, H., Lengauer, C.L., Parthé, E., Trigonal B2O3 with higher space-group symmetry: results of a reevaluation. Monatsh. Chem. 132 (2001), 1515–1517.
39. Prewitt, C.T., Shannon, R.D., Crystal structure of a high-pressure form of B2O3. Acta Crystallogr. B 24:6 (1968), 869–874.
40. Pan, S., Smit, J.P., Lanier, C.H., Marvel, M.R., Marks, L.D., Poeppelmeier, K.R., Optical Floating Zone Growth of β-BaB2O4 from a LiBa2B5O10-Based Solvent. Cryst. Growth Des. 7:8 (2007), 1561–1564.
41. Vegas, A., Cano, F.H., García-Blanco, S., The crystal structure of calcium orthoborate: a redetermination. Acta Crystallogr. B 31:5 (1975), 1416–1419.
42. Zachariasen, W.H., The crystal lattice of calcium metaborate, CaB2O4. Proc. Natl. Acad. Sci., 17, 1931, 617.
43. Marezio, M., Remeika, J.P., Dernier, P.D., The crystal structure of the high-pressure phase CaB2O4(III). Acta Crystallogr. B 25:5 (1969), 955–964.
44. Marezio, M., Remeika, J.P., Dernier, P.D., The crystal structure of the high-pressure phase CaB2O4(IV), and polymorphism in CaB2O4. Acta Crystallogr. B 25:5 (1969), 965–970.
45. Huppertz, H., β-CaB4O7: a new polymorph synthesized under high-pressure/high-temperature conditions. Z. Naturforsch. B 58 (2003), 257–265.
46. Kanchana, V., Vaitheeswaran, G., Rajagopalan, M., Pressure induced structural phase transitions and metallization of BaF2. J. Alloy. Compd. 359:1-2 (2003), 66–72.
47. Uludoğan, M., ÇağIn, T., Strachan, A., Goddard, W.A., Ab-initio studies of pressure induced phase transitions in BaO. J. Comput. Aided Mol. Des. 8 (2001), 193–202.
48. Liu, L.-g., Bassett, W.A., Effect of pressure on the crystal structure and the lattice parameters of BaO. J. Geophys. Res. 77:26 (1972), 4934–4937.
49. Dachille, F., Roy, R., A new high-pressure form of B2O3 and inferences on cation coordination from infrared spectroscopy. J. Am. Ceram. Soc. 42:2 (1959), 78–80.
50. Leger, J.M., Haines, J., Atouf, A., Schulte, O., Hull, S., High-pressure X-ray- and neutron-diffraction studies of BaF2: An example of a coordination number of 11 in AX2 compounds. Phys. Rev. B 52 (1995), 13247–13256.
51. Ayala, A P, Atomistic simulations of the pressure-induced phase transitions in BaF2 crystals. J. Phys. Condens. Matter 13:50 (2001), 11741–11749.
|