Цитирование: | 1. Fahey, J. J. Shortite, a new carbonate of sodium and calcium. Am. Mineral. 1939, 24, 514-518
2. Dickens, B.; Hyman, A.; Brown, W. E. Crystal structure of Ca2Na2(CO3)3(shortite). J. Res. Natl. Bur. Stand. A Phys. Chem. 1971, 75, 129-135, 10.6028/jres.075a.013
3. Golovin, A. V.; Sharygin, I. S.; Korsakov, A. V. Origin of alkaline carbonates in kimberlites of the Siberian craton: Evidence from melt inclusions in mantle olivine of the Udachnaya-East pipe. Chem. Geol. 2017, 455, 357-375, 10.1016/j.chemgeo.2016.10.036
4. Golovin, A. V.; Sharygin, I. S.; Kamenetsky, V. S.; Korsakov, A. V.; Yaxley, G. M. Alkali-carbonate melts from the base of cratonic lithospheric mantle: links to kimberlites. Chem. Geol. 2018, 483, 261-274, 10.1016/j.chemgeo.2018.02.016
5. Kamenetsky, V. S.; Sharygin, V. V.; Kamenetsky, M. B.; Golovin, A. V. Chloride-carbonate nodules in kimberlites from the Udachnaya pipe: alternative approach to the evolution of kimberlite magmas. Geochem. Int. 2006, 44, 935-940, 10.1134/s0016702906090084
6. Song, Y.; Luo, M.; Zhao, D.; Peng, G.; Lin, C.; Ye, N. Explorations of new UV nonlinear optical materials in the Na2CO3-CaCO3system. J. Mater. Chem. C 2017, 5, 8758-8764, 10.1039/c7tc02789c
7. Rashchenko, S. V.; Bakakin, V. V.; Shatskiy, A. F.; Gavryushkin, P. N.; Seryotkin, Y. V.; Litasov, K. D. Noncentrosymmetric Na2Ca4(CO3)5 Carbonate of "M13M23XY3Z" Structural Type and Affinity between Borate and Carbonate Structures for Design of New Optical Materials. Cryst. Growth Des. 2017, 17, 6079-6084, 10.1021/acs.cgd.7b01161
8. Nehrke, G.; Poigner, H.; Wilhelms-Dick, D.; Brey, T.; Abele, D. Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clamLaternula elliptica. Geochem., Geophys., Geosyst. 2012, 13, Q05014, 10.1029/2011gc003996
9. Bayarjargal, L.; Fruhner, C.-J.; Schrodt, N.; Winkler, B. CaCO3phase diagram studied with Raman spectroscopy at pressures up to 50 GPa and high temperatures and DFT modeling. Phys. Earth Planet. Inter. 2018, 281, 31-45, 10.1016/j.pepi.2018.05.002
10. Gavryushkin, P. N.; Martirosyan, N. S.; Inerbaev, T. M.; Popov, Z. I.; Rashchenko, S. V.; Likhacheva, A. Y.; Lobanov, S. S.; Goncharov, A. F.; Prakapenka, V. B.; Litasov, K. D. Aragonite-II and CaCO3-VII: new high-pressure, high-temperature polymorphs of CaCO3. Cryst. Growth Des. 2017, 17, 6291-6296, 10.1021/acs.cgd.7b00977
11. Gillet, P.; Biellmann, C.; Reynard, B.; McMillan, P. Raman spectroscopic studies of carbonates. Part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys. Chem. Miner. 1993, 20, 1-18, 10.1007/bf00202245
12. Litasov, K. D.; Shatskiy, A.; Gavryushkin, P. N.; Bekhtenova, A. E.; Dorogokupets, P. I.; Danilov, B. S.; Higo, Y.; Akilbekov, A. T.; Inerbaev, T. M. P-V-T equation of state of CaCO3aragonite to 29 GPa and 1673 K: In situ X-ray diffraction study. Phys. Earth Planet. Inter. 2017, 265, 82-91, 10.1016/j.pepi.2017.02.006
13. Fernandez-Martinez, A.; Kalkan, B.; Clark, S. M.; Waychunas, G. A. Pressure-Induced Polyamorphism and Formation of "Aragonitic" Amorphous Calcium Carbonate. Angew. Chem., Int. Ed. 2013, 52, 8354-8357, 10.1002/anie.201302974
14. Glasby, G. Abiogenic origin of hydrocarbons: An historical overview. Resour. Geol. 2006, 56, 85-98, 10.1111/j.1751-3928.2006.tb00271.x
15. Litasov, K. D.; Shatskiy, A.; Ohtani, E. Melting and subsolidus phase relations in peridotite and eclogite systems with reduced COH fluid at 3-16 GPa. Earth Planet. Sci. Lett. 2014, 391, 87-99, 10.1016/j.epsl.2014.01.033
16. Shatskiy, A.; Borzdov, Y. M.; Litasov, K. D.; Kupriyanov, I. N.; Ohtani, E.; Palyanov, Y. N. Phase relations in the system FeCO3-CaCO3 at 6 GPa and 900-1700 °C and its relation to the system CaCO3-FeCO3-MgCO3. Am. Mineral. 2014, 99, 773-785, 10.2138/am.2014.4721
17. Podborodnikov, I. V.; Shatskiy, A.; Arefiev, A. V.; Rashchenko, S. V.; Chanyshev, A. D.; Litasov, K. D. The system Na2CO3-CaCO3at 3 GPa. Phys. Chem. Miner. 2018, 45, 773-787, 10.1007/s00269-018-0961-2
18. Vennari, C. E.; Beavers, C. M.; Williams, Q. High-pressure/temperature behavior of the alkali/calcium carbonate shortite (Na2Ca2(CO3)3): Implications for carbon sequestration in Earth's transition zone. J. Geophys. Res.: Solid Earth 2018, 123, 6574-6591, 10.1029/2018jb015846
19. Sverjensky, D. A.; Stagno, V.; Huang, F. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat. Geosci. 2014, 7, 909-913, 10.1038/ngeo2291
20. Sverjensky, D. A.; Huang, F. Diamond formation due to a pH drop during fluid-rock interactions. Nat. Commun. 2015, 6, 8702, 10.1038/ncomms9702
21. Stanton, J. F.; Lopreore, C. L.; Gauss, J. The equilibrium structure and fundamental vibrational frequencies of dioxirane. J. Chem. Phys. 1998, 108, 7190-7196, 10.1063/1.476136
22. Goryainov, S. V.; Krylov, A. S.; Polyansky, O. P.; Vtyurin, A. N. In-situ Raman study of phengite compressed in water medium under simultaneously high P-T parameters. J. Raman Spectrosc. 2017, 48, 1431-1437, 10.1002/jrs.5112
23. Goryainov, S. V.; Krylov, A. S.; Vtyurin, A. N.; Pan, Y. Raman study of datolite CaBSiO4(OH) at simultaneously high pressure and high temperature. J. Raman Spectrosc. 2015, 46, 177-181, 10.1002/jrs.4614
24. Rashchenko, S. V.; Likhacheva, A. Y.; Goryainov, S. V.; Krylov, A. S.; Litasov, K. D. In situ spectroscopic study of water intercalation into talc: New features of 10 Å phase formation. Am. Mineral. 2016, 101, 431-436, 10.2138/am-2016-5356
25. Goryainov, S. V.; Krylov, A. S.; Vtyurin, A. N.; Likhacheva, A. Y.; Prasad, P. S. R. In situ Raman study of wairakite and dawsonite interaction with water at high P-T parameters. Bull. Russ. Acad. Sci.: Phys. 2016, 80, 522-524, 10.3103/s1062873816050087
26. Datchi, F.; Dewaele, A.; Loubeyre, P.; Letoullec, R.; Le Godec, Y.; Canny, B. Optical pressure sensors for high-pressure-high-temperature studies in a diamond anvil cell. High Pres. Res. 2007, 27, 447-463, 10.1080/08957950701659593
27. Krylov, A. S.; Gudim, I. A.; Nemtsev, I.; Krylova, S. N.; Shabanov, A. V.; Krylov, A. A. Raman study of HoFe3(BO3)4at simultaneously high pressure and high temperature: P-T phase diagram. J. Raman Spectrosc. 2017, 48, 1406-1410, 10.1002/jrs.5078
28. Johannes, W.; Puhan, D. The calcite-aragonite transition, reinvestigated. Contrib. Mineral. Petrol. 1971, 31, 28-38, 10.1007/bf00373389
29. Borodina, U.; Likhacheva, A.; Golovin, A.; Goryainov, S.; Rashchenko, S.; Korsakov, A. Raman spectra of shortite Na2Ca2(CO3)3compressed up to 8 GPa. High Pres. Res. 2018, 38, 293-302, 10.1080/08957959.2018.1488973
30. Model S506 Interactive Peak Fit. User's Manual; Canberra Industries, Inc.: United States of America, 2002.
31. Goryainov, S. V.; Smirnov, M. B. Raman spectra and lattice-dynamical calculations of natrolite. Eur. J. Mineral. 2001, 13, 507-519, 10.1127/0935-1221/2001/0013-0507
32. Goryainov, S. V.; Pan, Y.; Smirnov, M. B.; Sun, W.; Mi, J.-X. Raman investigation on the behavior of parasibirskite CaHBO3at high pressure. Spectrochim. Acta, Part A 2017, 173, 46-52, 10.1016/j.saa.2016.08.040
33. Goryainov, S. V. Raman study of thaumasite Ca3Si(OH)6(SO4)(CO3)12H2O at high pressure. J. Raman Spectrosc. 2016, 47, 984-992, 10.1002/jrs.4936
34. Clark, S. J.; Pickard, C. J.; Hasnip, P. J.; Refson, K.; Payne, M. C.; Refson, K.; Payne, M. First principles methods using CASTEP. Z. Kristallogr.-Cryst. Mater. 2005, 220, 567-570, 10.1524/zkri.220.5.567.65075
35. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B: Condens. Matter Mater. Phys. 1976, 13, 5188-5192, 10.1103/physrevb.13.5188
36. Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406, 10.1103/physrevlett.100.136406
37. Rashchenko, S. V.; Goryainov, S. V.; Romanenko, A. V.; Golovin, A. V.; Korsakov, A. V.; Moine, B. N.; Mikhno, A. O. High-pressure Raman study of nyerereite from Oldoinyo Lengai. J. Raman Spectrosc. 2017, 48, 1438-1442, 10.1002/jrs.5152
38. Frost, R. L.; Dickfos, M. J. Raman and infrared spectroscopic study of the anhydrous carbonate minerals shortite and barytocalcite. Spectrochim. Acta, Part A 2008, 71, 143-146, 10.1016/j.saa.2007.11.021
39. Spycher, N.; Pruess, K.; Ennis-King, J. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 C and up to 600 bar. Geochim. Cosmochim. Acta 2003, 67, 3015-3031, 10.1016/s0016-7037(03)00273-4
40. SDBS. SDBS Web: http://sdbs.db.aist.go.jp; National Institute of Advanced Industrial Science and Technology, 31, 03, 1999 (SDBS No.: 2964).
41. Tajima, I.; Takahashi, H.; Machida, K. Polarized i.r. reflection and Raman spectra of sodium formate crystal. Spectrochim. Acta, Part A 1981, 37, 905-910, 10.1016/0584-8539(81)80012-8
42. Heyns, A. M. The effect of pressure on the Raman spectra of solids. III. Sodium formate, NaHCOO. J. Chem. Phys. 1986, 84, 3610, 10.1063/1.450197
43. Wang, S.; Kong, P.; Zhang, Z.; Sun, H.; Li, P.; Chen, R.; Gu, B.; Ungar, G.; Wu, X.; Cheng, L. et al. Structure, morphology, and nonlinear optical properties of orthorhombic alfa-Ca(HCOO)2single crystals. Opt. Mater. Express 2018, 8, 2238-2245, 10.1364/ome.8.002238
44. Spinner, E. Vibration-spectral studies of carboxylate ions. Part III. Sodium formate, HCO2Na and DCO2Na; Raman-spectral depolarisation ratios in aqueous solution, and band splitting in the solid-state infrared spectrum. J. Chem. Soc. B 1967, 0, 879-885, 10.1039/j29670000879
45. Noma, H.; Machida, K. Polarized Raman intensities of sodium formate crystal and its non-cylindrical electrooptical parameters. J. Mol. Struct. 1990, 224, 163-174, 10.1016/0022-2860(90)87014-o
46. Hoffmann, F. M.; Yang, Y.; Paul, J.; White, M. G.; Hrbek, J. Hydrogenation of carbon dioxide by water: Alkali-promoted synthesis of formate. J. Phys. Chem. Lett. 2010, 1, 2130-2134, 10.1021/jz1007356
47. Sobolev, N. V.; Tomilenko, A. A.; Bul'bak, T. A.; Logvinova, A. M. Composition of Hydrocarbons in Diamonds, Garnet, and Olivine from Diamondiferous Peridotites from the Udachnaya Pipe in Yakutia, Russia. Engineering 2019, 5, 471-478, 10.1016/j.eng.2019.03.002
|