Инд. авторы: Goryainov S.V., Krylova S.N., Borodina U.O, Krylov A.S.
Заглавие: Dynamical Immiscibility of Aqueous Carbonate Fluid in the Shortite-Water System at High-Pressure-Temperature Conditions
Библ. ссылка: Goryainov S.V., Krylova S.N., Borodina U.O, Krylov A.S. Dynamical Immiscibility of Aqueous Carbonate Fluid in the Shortite-Water System at High-Pressure-Temperature Conditions // Journal of Physical Chemistry C. - 2021. - Vol.125. - Iss. 33. - P.18501-18509. - ISSN 1932-7447. - EISSN 1932-7455.
Внешние системы: DOI: 10.1021/acs.jpcc.1c05077; РИНЦ: 47035071; WoS: 000692021300045;
Реферат: eng: Anhydrous carbonate shortite, Na2Ca2(CO3)(3), compressed in water at high pressure-temperature (up to 5 GPa, 350 degrees C) was studied by Raman spectroscopy. At 3.2 GPa and 250 degrees C, shortite begins to dissolve, followed by crystallization of aragonite and aragonite'. The unusual behavior of aqueous carbonate fluid was observed at 4.8 GPa and 300-350 degrees C. This process is characterized by the active formation of microbubbles within 2-60 s that are inserted one into another. Microbubbles are considered to be a result of the two immiscible fluid stratification. This dynamical immiscibility of the fluid accompanies the appearance of several crystalline carbonates and organic molecular crystals. Na-formate and some polymorphs of Ca-formate were observed.
Ключевые слова: CALCITE; CRYSTAL; BEHAVIOR; NA2CO3-CACO3; RAMAN-SPECTRA; SODIUM FORMATE; SIMULTANEOUSLY HIGH-PRESSURE; PHASE-RELATIONS; GPA;
Издано: 2021
Физ. характеристика: с.18501-18509
Цитирование: 1. Fahey, J. J. Shortite, a new carbonate of sodium and calcium. Am. Mineral. 1939, 24, 514-518 2. Dickens, B.; Hyman, A.; Brown, W. E. Crystal structure of Ca2Na2(CO3)3(shortite). J. Res. Natl. Bur. Stand. A Phys. Chem. 1971, 75, 129-135, 10.6028/jres.075a.013 3. Golovin, A. V.; Sharygin, I. S.; Korsakov, A. V. Origin of alkaline carbonates in kimberlites of the Siberian craton: Evidence from melt inclusions in mantle olivine of the Udachnaya-East pipe. Chem. Geol. 2017, 455, 357-375, 10.1016/j.chemgeo.2016.10.036 4. Golovin, A. V.; Sharygin, I. S.; Kamenetsky, V. S.; Korsakov, A. V.; Yaxley, G. M. Alkali-carbonate melts from the base of cratonic lithospheric mantle: links to kimberlites. Chem. Geol. 2018, 483, 261-274, 10.1016/j.chemgeo.2018.02.016 5. Kamenetsky, V. S.; Sharygin, V. V.; Kamenetsky, M. B.; Golovin, A. V. Chloride-carbonate nodules in kimberlites from the Udachnaya pipe: alternative approach to the evolution of kimberlite magmas. Geochem. Int. 2006, 44, 935-940, 10.1134/s0016702906090084 6. Song, Y.; Luo, M.; Zhao, D.; Peng, G.; Lin, C.; Ye, N. Explorations of new UV nonlinear optical materials in the Na2CO3-CaCO3system. J. Mater. Chem. C 2017, 5, 8758-8764, 10.1039/c7tc02789c 7. Rashchenko, S. V.; Bakakin, V. V.; Shatskiy, A. F.; Gavryushkin, P. N.; Seryotkin, Y. V.; Litasov, K. D. Noncentrosymmetric Na2Ca4(CO3)5 Carbonate of "M13M23XY3Z" Structural Type and Affinity between Borate and Carbonate Structures for Design of New Optical Materials. Cryst. Growth Des. 2017, 17, 6079-6084, 10.1021/acs.cgd.7b01161 8. Nehrke, G.; Poigner, H.; Wilhelms-Dick, D.; Brey, T.; Abele, D. Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clamLaternula elliptica. Geochem., Geophys., Geosyst. 2012, 13, Q05014, 10.1029/2011gc003996 9. Bayarjargal, L.; Fruhner, C.-J.; Schrodt, N.; Winkler, B. CaCO3phase diagram studied with Raman spectroscopy at pressures up to 50 GPa and high temperatures and DFT modeling. Phys. Earth Planet. Inter. 2018, 281, 31-45, 10.1016/j.pepi.2018.05.002 10. Gavryushkin, P. N.; Martirosyan, N. S.; Inerbaev, T. M.; Popov, Z. I.; Rashchenko, S. V.; Likhacheva, A. Y.; Lobanov, S. S.; Goncharov, A. F.; Prakapenka, V. B.; Litasov, K. D. Aragonite-II and CaCO3-VII: new high-pressure, high-temperature polymorphs of CaCO3. Cryst. Growth Des. 2017, 17, 6291-6296, 10.1021/acs.cgd.7b00977 11. Gillet, P.; Biellmann, C.; Reynard, B.; McMillan, P. Raman spectroscopic studies of carbonates. Part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys. Chem. Miner. 1993, 20, 1-18, 10.1007/bf00202245 12. Litasov, K. D.; Shatskiy, A.; Gavryushkin, P. N.; Bekhtenova, A. E.; Dorogokupets, P. I.; Danilov, B. S.; Higo, Y.; Akilbekov, A. T.; Inerbaev, T. M. P-V-T equation of state of CaCO3aragonite to 29 GPa and 1673 K: In situ X-ray diffraction study. Phys. Earth Planet. Inter. 2017, 265, 82-91, 10.1016/j.pepi.2017.02.006 13. Fernandez-Martinez, A.; Kalkan, B.; Clark, S. M.; Waychunas, G. A. Pressure-Induced Polyamorphism and Formation of "Aragonitic" Amorphous Calcium Carbonate. Angew. Chem., Int. Ed. 2013, 52, 8354-8357, 10.1002/anie.201302974 14. Glasby, G. Abiogenic origin of hydrocarbons: An historical overview. Resour. Geol. 2006, 56, 85-98, 10.1111/j.1751-3928.2006.tb00271.x 15. Litasov, K. D.; Shatskiy, A.; Ohtani, E. Melting and subsolidus phase relations in peridotite and eclogite systems with reduced COH fluid at 3-16 GPa. Earth Planet. Sci. Lett. 2014, 391, 87-99, 10.1016/j.epsl.2014.01.033 16. Shatskiy, A.; Borzdov, Y. M.; Litasov, K. D.; Kupriyanov, I. N.; Ohtani, E.; Palyanov, Y. N. Phase relations in the system FeCO3-CaCO3 at 6 GPa and 900-1700 °C and its relation to the system CaCO3-FeCO3-MgCO3. Am. Mineral. 2014, 99, 773-785, 10.2138/am.2014.4721 17. Podborodnikov, I. V.; Shatskiy, A.; Arefiev, A. V.; Rashchenko, S. V.; Chanyshev, A. D.; Litasov, K. D. The system Na2CO3-CaCO3at 3 GPa. Phys. Chem. Miner. 2018, 45, 773-787, 10.1007/s00269-018-0961-2 18. Vennari, C. E.; Beavers, C. M.; Williams, Q. High-pressure/temperature behavior of the alkali/calcium carbonate shortite (Na2Ca2(CO3)3): Implications for carbon sequestration in Earth's transition zone. J. Geophys. Res.: Solid Earth 2018, 123, 6574-6591, 10.1029/2018jb015846 19. Sverjensky, D. A.; Stagno, V.; Huang, F. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat. Geosci. 2014, 7, 909-913, 10.1038/ngeo2291 20. Sverjensky, D. A.; Huang, F. Diamond formation due to a pH drop during fluid-rock interactions. Nat. Commun. 2015, 6, 8702, 10.1038/ncomms9702 21. Stanton, J. F.; Lopreore, C. L.; Gauss, J. The equilibrium structure and fundamental vibrational frequencies of dioxirane. J. Chem. Phys. 1998, 108, 7190-7196, 10.1063/1.476136 22. Goryainov, S. V.; Krylov, A. S.; Polyansky, O. P.; Vtyurin, A. N. In-situ Raman study of phengite compressed in water medium under simultaneously high P-T parameters. J. Raman Spectrosc. 2017, 48, 1431-1437, 10.1002/jrs.5112 23. Goryainov, S. V.; Krylov, A. S.; Vtyurin, A. N.; Pan, Y. Raman study of datolite CaBSiO4(OH) at simultaneously high pressure and high temperature. J. Raman Spectrosc. 2015, 46, 177-181, 10.1002/jrs.4614 24. Rashchenko, S. V.; Likhacheva, A. Y.; Goryainov, S. V.; Krylov, A. S.; Litasov, K. D. In situ spectroscopic study of water intercalation into talc: New features of 10 Å phase formation. Am. Mineral. 2016, 101, 431-436, 10.2138/am-2016-5356 25. Goryainov, S. V.; Krylov, A. S.; Vtyurin, A. N.; Likhacheva, A. Y.; Prasad, P. S. R. In situ Raman study of wairakite and dawsonite interaction with water at high P-T parameters. Bull. Russ. Acad. Sci.: Phys. 2016, 80, 522-524, 10.3103/s1062873816050087 26. Datchi, F.; Dewaele, A.; Loubeyre, P.; Letoullec, R.; Le Godec, Y.; Canny, B. Optical pressure sensors for high-pressure-high-temperature studies in a diamond anvil cell. High Pres. Res. 2007, 27, 447-463, 10.1080/08957950701659593 27. Krylov, A. S.; Gudim, I. A.; Nemtsev, I.; Krylova, S. N.; Shabanov, A. V.; Krylov, A. A. Raman study of HoFe3(BO3)4at simultaneously high pressure and high temperature: P-T phase diagram. J. Raman Spectrosc. 2017, 48, 1406-1410, 10.1002/jrs.5078 28. Johannes, W.; Puhan, D. The calcite-aragonite transition, reinvestigated. Contrib. Mineral. Petrol. 1971, 31, 28-38, 10.1007/bf00373389 29. Borodina, U.; Likhacheva, A.; Golovin, A.; Goryainov, S.; Rashchenko, S.; Korsakov, A. Raman spectra of shortite Na2Ca2(CO3)3compressed up to 8 GPa. High Pres. Res. 2018, 38, 293-302, 10.1080/08957959.2018.1488973 30. Model S506 Interactive Peak Fit. User's Manual; Canberra Industries, Inc.: United States of America, 2002. 31. Goryainov, S. V.; Smirnov, M. B. Raman spectra and lattice-dynamical calculations of natrolite. Eur. J. Mineral. 2001, 13, 507-519, 10.1127/0935-1221/2001/0013-0507 32. Goryainov, S. V.; Pan, Y.; Smirnov, M. B.; Sun, W.; Mi, J.-X. Raman investigation on the behavior of parasibirskite CaHBO3at high pressure. Spectrochim. Acta, Part A 2017, 173, 46-52, 10.1016/j.saa.2016.08.040 33. Goryainov, S. V. Raman study of thaumasite Ca3Si(OH)6(SO4)(CO3)12H2O at high pressure. J. Raman Spectrosc. 2016, 47, 984-992, 10.1002/jrs.4936 34. Clark, S. J.; Pickard, C. J.; Hasnip, P. J.; Refson, K.; Payne, M. C.; Refson, K.; Payne, M. First principles methods using CASTEP. Z. Kristallogr.-Cryst. Mater. 2005, 220, 567-570, 10.1524/zkri.220.5.567.65075 35. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B: Condens. Matter Mater. Phys. 1976, 13, 5188-5192, 10.1103/physrevb.13.5188 36. Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406, 10.1103/physrevlett.100.136406 37. Rashchenko, S. V.; Goryainov, S. V.; Romanenko, A. V.; Golovin, A. V.; Korsakov, A. V.; Moine, B. N.; Mikhno, A. O. High-pressure Raman study of nyerereite from Oldoinyo Lengai. J. Raman Spectrosc. 2017, 48, 1438-1442, 10.1002/jrs.5152 38. Frost, R. L.; Dickfos, M. J. Raman and infrared spectroscopic study of the anhydrous carbonate minerals shortite and barytocalcite. Spectrochim. Acta, Part A 2008, 71, 143-146, 10.1016/j.saa.2007.11.021 39. Spycher, N.; Pruess, K.; Ennis-King, J. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 C and up to 600 bar. Geochim. Cosmochim. Acta 2003, 67, 3015-3031, 10.1016/s0016-7037(03)00273-4 40. SDBS. SDBS Web: http://sdbs.db.aist.go.jp; National Institute of Advanced Industrial Science and Technology, 31, 03, 1999 (SDBS No.: 2964). 41. Tajima, I.; Takahashi, H.; Machida, K. Polarized i.r. reflection and Raman spectra of sodium formate crystal. Spectrochim. Acta, Part A 1981, 37, 905-910, 10.1016/0584-8539(81)80012-8 42. Heyns, A. M. The effect of pressure on the Raman spectra of solids. III. Sodium formate, NaHCOO. J. Chem. Phys. 1986, 84, 3610, 10.1063/1.450197 43. Wang, S.; Kong, P.; Zhang, Z.; Sun, H.; Li, P.; Chen, R.; Gu, B.; Ungar, G.; Wu, X.; Cheng, L. et al. Structure, morphology, and nonlinear optical properties of orthorhombic alfa-Ca(HCOO)2single crystals. Opt. Mater. Express 2018, 8, 2238-2245, 10.1364/ome.8.002238 44. Spinner, E. Vibration-spectral studies of carboxylate ions. Part III. Sodium formate, HCO2Na and DCO2Na; Raman-spectral depolarisation ratios in aqueous solution, and band splitting in the solid-state infrared spectrum. J. Chem. Soc. B 1967, 0, 879-885, 10.1039/j29670000879 45. Noma, H.; Machida, K. Polarized Raman intensities of sodium formate crystal and its non-cylindrical electrooptical parameters. J. Mol. Struct. 1990, 224, 163-174, 10.1016/0022-2860(90)87014-o 46. Hoffmann, F. M.; Yang, Y.; Paul, J.; White, M. G.; Hrbek, J. Hydrogenation of carbon dioxide by water: Alkali-promoted synthesis of formate. J. Phys. Chem. Lett. 2010, 1, 2130-2134, 10.1021/jz1007356 47. Sobolev, N. V.; Tomilenko, A. A.; Bul'bak, T. A.; Logvinova, A. M. Composition of Hydrocarbons in Diamonds, Garnet, and Olivine from Diamondiferous Peridotites from the Udachnaya Pipe in Yakutia, Russia. Engineering 2019, 5, 471-478, 10.1016/j.eng.2019.03.002