Инд. авторы: Karyakin Y.V., Sklyarov E.V., Travin A.V.
Заглавие: Plume Magmatism at Franz Josef Land
Библ. ссылка: Karyakin Y.V., Sklyarov E.V., Travin A.V. Plume Magmatism at Franz Josef Land // Petrology. - 2021. - Vol.29. - Iss. 5. - P.528-560. - ISSN 0869-5911. - EISSN 1556-2085.
Внешние системы: DOI: 10.1134/S0869591121050027; РИНЦ: 47003245; РИНЦ: 47003245; WoS: 000695843000004;
Реферат: eng: The morphological types of geological sections, newly acquired Ar-40/Ar-39 isotope dates, and geochemical and mineralogical data on Jurassic-Cretaceous basaltic rocks at Franz Josef Land indicate that plume magmatism evolved in this archipelago in two episodes. The Jurassic episode (at 192 +/- 3 Ma) was marked by eruptions only of low-K tholeiites. The lava flows of this stage are characterized by combination of textures of two types in their flows: colonnade large-prismatic (in the bottom portions of the flows) and randomly oriented faned small-prismatic parting (in the tops of the flows). During the Late Jurassic-Cretaceous episode (at 157 +/- 3 Ma, 132 +/- 1 Ma, and 115 +/- 1 Ma), low-K tholeiites were erupted together with subalkaline tholeiites, which compose flows, most of the sills, and all the dykes we studied in the archipelago. The lava flows of this episode typically have only columnar and block parting structures. The episodes of magmatic activity well correlate with episodes of continental sedimentation on the archipelago and are separated from one another with an episode of marine transgression in the Middle Jurassic. The volcanics of the low-K series typically bear relatively low concentrations of TiO2 (<= 2 wt %) and MgO (mostly 5-6 wt %), low K2O concentrations (<= 0.3 wt %), and weakly fractionated REE patterns (La-n/Yb-n = 2.11-2.30). The rocks of the subalkaline series are richer in K2O (0.7-1.2 wt %), TiO2, HFSE, and LILE and have fractionated REE patterns (La-n/Yb-n = 3.85-4.45). The mineralogical composition of the rocks of both series is practically exactly similar. The rocks are dominated by pyroxene and plagioclase and contain subordinate amounts of olivine, titanomagnetite, and ilmenite. The pyroxenes are augite (X-Ca = 0.32-0.42), and the low-K tholeiites contain two pyroxenes: augite and subcalcic augite (X-Ca = 0.12-0.25). The Early Cretaceous low-K tholeiites contain PGE minerals (of the Au-Cu-Pd type): cuproauride Au(Cu, Pd), auricuprite Au(Cu, Pd)(3), and compounds close to skaergaardite PdCu and nilsenite PdCu3. It is interesting that the volcanic rocks of both Early Cretaceous series contain magmatic siderite.
Ключевые слова: plume magmatism; Ar-40; Ar-39 method; Franz Josef Land; CRETACEOUS MAGMATISM; AGE; ISLAND; ORIGIN; SVALBARD; DOLERITES; BASALTIC MAGMATISM; basaltic rocks;
Издано: 2021
Физ. характеристика: с.528-560
Цитирование: 1. Abashev, V.V., Metelkin, D.V., Mikhaltsov, N.E., Vernikovsky, V.A., and Bragin, V.Yu., Paleomagnetism of traps of the Franz Josef Land Archipelago, Russ. Geol. Geophys., 2018, vol. 59, pp. 1161–1181. DOI: 10.1016/j.rgg.2018.08.010 2. Amundsen, H., Evdokimov, A., Dibner, V.D., and Andresen, A., Geochemistry and petrogenetic significance of mesozoic magmatism on Franz Josef Land, northeastern Barents Sea, in Geological Aspects of Franz Josef Land and the Northernmost Barents Sea. The Barents Sea Geotraverse, Solheim, A., Musatov, E., and Heintz, N., Eds., Norsk Polarinstitutt Meddelelser, 1998, vol. 151, pp. 105–120. 3. Arndt, N.T., Czamanske, G.K., Wooden, J.L., and Fedorenko, V.A., Mantle and crustal contribution to continental flood volcanism, Tectonophysics, 1993, vol. 223, pp. 39–52. DOI: 10.1016/0040-1951(93)90156-E 4. Baksi, A.K., Archibald, D.A., and Farrar, E., Intercalibration of 40Ar/39Ar dating standarts, Chem. Geol., 1996, vol. 129, pp. 307–324. DOI: 10.1016/0009-2541(95)00154-9 5. Campsie, J., Rasmussen, M.H., Hansen, N., Liebe, C.J., Laursen, J., Brochwicz-Levinski, W., and Johnson, L., K-Ar ages of basaltic rocks collected during a traverse of the Frans Josef Land archipelago (1895–1896), Polar Res., 1988, no. 6, pp. 173–177. 6. Chernysheva, E.A., Kharin, G.S., and Stolbov, N.M., Basaltic magmatism in arctic seas related to the Mesozoic activity of the Iceland plume, Petrology, 2005, vol. 13, no. 3, pp. 289–304. 7. Corfu, F., Polteau, S., Planke, S., Faleide, J.I., Zayoncheck, A., and Stolbov, N., U-Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea large igneous province, Geol. Mag., 2013, vol. 150, no. 6, pp. 1127–1135. DOI: 10.1017/S0016756813000162 8. Dibner, V.D., Barents Sea islands, Geologiya SSSR (Geology of the USSR), Moscow: Nedra, 1970, vol. 26, pp. 60–108. 9. Dibner, V.D., Geology of Franz Josef Land, Norsk Polarinstitutt. Mtddelelser, 1998, no. 146. 10. Dobretsov, N.L., Vernikovsky, V.A., Simonov, V.A., Karyakin, Y.V., and Korago, E.A., Mesozoic–Cenozoic volcanism and geodynamic events in the central and eastern arctic, Russ. Geol. Geophys., 2013, vol. 54, no. 8, pp. 874–887. DOI: 10.1016/j.rgg.2013.07.008 11. Dodson, M.H., Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petrol., 1973, vol. 40, pp. 259–274. DOI: 10.1007/BF00373790 12. Ernst, R.E., Large Igneous Provinces, Cambridge: Cambridge University Press, 2014. DOI: 10.1017/CBO9781139025300 13. Estrada, S., Damaske, D., Henjes-Kunst, F., Schreckenberger, B., Oakey, G.N., Piepjohn, K., and Linnemannn, U., Multistage cretaceous magmatism in the northern coastal region of Ellesmere Island and its relation to the formation of Alpha Ridge—evidence from aeromagnetic, geochemical and geochronological data, Norw. J. Geol., 2016, vol. 96, no. 2, pp. 65–95. 14. Geptner, A.R., Characteristic features of some genetic types of continental sediments of volcanic areas, Protsessy kontinental'nogo litogeneza (Processes of Continental Lithogenesis), Moscow: Nauka, 1980, pp. 94–122. 15. Geptner, A.R., Environmental influence on the formation of basaltic volcanoes of Iceland, Tr. III Vserossiiskogo simpoziuma po vulkanologii i paleovulkanologii “Vulkanizm i geodinamika” (Proc. 3rd All-Russian Symposium on Volcanology and Paleovolcanology), Ulan-Ude: Izd-vo Buryatskogo NTs SO RAN, 2006, pp. 632–634. 16. Giletti, B., Studies in diffusion 1: Ar in phlogopite mica, Geochemical Transport and Kinetics. Eds. Hofmann, A., Giletti, V., Yoder, H.S., Yund, R.A., Eds., Carnegie Inst. Wash. Publ., 1974, pp. 107–115. 17. Grachev, A.F., A new view on the origin of magmatism of the Franz Josef Land, Izv. Phys. Solid Earth, 2001, vol. 37, no. 9, pp. 744–756. 18. Grachev, A.F., Arakelyantz, M.M., Lebedev, V.A., Musatov, E.E., and Stolbov, N.M., New K-Ar ages for basalts from Franz Josef Land, Russ. J. Earth Sci., 2001, vol. 3, no. 1, pp. 79–82. DOI: 10.2205/2001ES000053 19. Hodges, K.V., Geochronology and Thermochronology in Orogenic Systems. Treasure on Geochemistry, Oxford: Elsevier, 2004, pp. 263–292. 20. Il'ina, V.I., Dinocyst stratigraphy of the Bathonian–Oxfordian sediments on the Russian Platform, Stratigrafiya i paleogeografiya osadochnykh tolshch neftegazonosnykh basseinov SSSR (Stratigraphy and Paleogeography of Sedimentary Sequences of Petroleum Basins of the USSR), Kirichkova, A.I. and Chirva, S.A, Eds., Leningrad: VNIGRI, 1991, pp. 42–64. 21. Il'ina, V.I., Palynology of South Siberia, Tr. IGiG SO AN SSSR, 1995, vol. 638. 22. Irvine, T.N. and Baragar, W.R.A., A guide to the chemical classification of the common volcanic rocks, Can. J. Earth Sci., 1971, vol. 8, pp. 523–548. DOI: 10.1139/e71-055 23. Johnson, G.L. and Rich, J.E., A 30 million year cycle in arctic volcanism?, J. Geodynamics, 1986, vol. 6, nos 1–4, pp. 111–116. DOI: 10.1016/0264-3707(86)90035-9 24. Jowitt, S.M., Williamson, M.C., and Ernst, R.E., Geochemistry of the 130 to 80 Ma Canadian High Arctic large igneous province (HALIP) event and implications for Ni–Cu–PGE prospectivity, Econ. Geol., 2014, vol. 109, pp. 281–307. DOI: 10.2113/econgeo.109.2.281 25. Karyakin, Yu.V., Geological structure of the Tikhaya Bight coast (Guker Island, Franz Josev Land Archipelago). Answer to publications by N.M. Stolbov and E.B. Suvorova “On time of the formation of the plateaubasalt area of the Franz Josef Land: geological data,” Tektonika, geodinamika i rudogenez skladchatykh poyasov i platform. Materialy XLVIII Tektonicheskogo soveshchaniya (Tectonics, Geodynamics, and Ore Genesis of Fold Belts and Platforms. Proc. 48th Tectonic Conference), Moscow: GEOS, 2016, vol. 1, pp. 225–232. 26. Karyakin, Yu.V. and Shipilov, E.V., Geochemical specifics and 40Ar/39Ar age of the basaltoid magmatism of the Alexander Land, Northbrook, Hooker, and Hayes islands (Franz Josef Land Archipelago), Dokl. Earth Sci., 2009, vol. 425, no. 2, pp. 260–263. DOI: 10.1134/S1028334X09020196 27. Karyakin, Yu.V., Lyapunov, S.M., Simonov, V.A., Sklyarov, E.V., Travin, A.V., and Shipilov, E.V., Mesozoic magmatic complexes of the Franz Josev Land Archipelago, Geologiya polyarnykh oblastei Zemli (Geology of the Polar Regions of the Earth), Moscow: GEOS, 2009, vol. 1, pp. 257–263. 28. Karyakin, Yu.V., Simonov, V.A., Sklyarov, E.V., Travin, A.V., Shipilov, E.V., and Kovyazin, S.V., Mantle plume episodes of the Archpelago Franz Joseph Land, Large Igneous Provinces, Mantle Plumes and Metallogeny. Abstracts of the International Symposium, Novosibirsk: Sibprint, 2009, pp. 144–146. 29. Karyakin, Yu.V., Sklyarov, E.V., Travin, A.V., and Shipilov, E.V., Age and composition of basalts of the central and southwestern parts of the Franz Josef Land archipelago, Tektonika i geodinamika skladchatykh poyasov i platform fanerozoya (Tectonics and Geodynamics of the Phanerozoic Fold Belts and Platforms), Moscow: GEOS, 2010, vol. 1, pp. 293–301. 30. Karyakin, Yu.V., Shipilov, E.V., Simonov, V.A., Sklyarov, E.V., and Travin, A.V., Phases and stages of the plume magmatism in the Franz-Josef Land Archipelago, Large Igneous Provinces of Asia. Abstracts of the International Symposium, Irkutsk, 2011, pp. 96–98. 31. Kharin, G.S Magmatic pulses of the Iceland plume, Petrology, 2000, vol. 8, no. 2, pp. 97–112. 32. Komarnitskii, V.M. and Shipilov, E.V., New geological data on magmatism of the Barents Sea, Dokl. Akad. Nauk SSSR, 1991, vol. 320, no. 5, pp. 1203–1206. 33. Kosteva, N.N., Stratigraphy of the Jurassic–Cretaceous Deposits of the Fanz Josef Land Archipelago, Arktika i Antarktika (Arctica and Antarctica), Moscow: Nauka, 2005, vol. 4, no. 38, pp. 16–32. 34. Levskii, L.K., Bogomolov, E.S., Stolbov, N.M., Vasil'eva, I.M., and Makar'eva, E.M., Sr-Nd-Pb isotopic systems in basalts of the Franz Josef Land Archipelago, Geochem. Int., 2006, vol. 44, no. 4, pp. 327–337. DOI: 10.1134/S0016702906040021 35. Makar'ev, A.A., Makar'eva, E.M., and Kosteva, N.N., New data on the geological structure, mineral resources, and geoecology of the Franz Josef Land archipelago, Razv. Okhr. Nedr., 2002, no. 9, pp. 23–27. 36. McDonald, A.M., Cabri, L.J., Rudashevsky, N.S., Stanley, C.J., Rudashevsky, V.N., and Ross, K.C., Nielsenite, PdCu3, a new platinum-group intermetallic mineral species from the Skaergaard intrusion, Greenland, Can. Mineral., 2008, vol. 46, pp. 709–716. DOI: 10.3749/canmin.46.3.709 37. Minakov, A., Yarushina, V., Faleide, J.I., Krupnova, N., Sakoulina, T., Dergunov, N., and Glebovsky, V., Dyke emplacement and crustal structure within a continental large igneous province, northern Barents Sea, Circum-Arctic Lithosphere Evolution, Pease, V. and Coakley, B., Eds., Geol. Soc. London: Spec. Publ., 2017, vol. 460, pp. 371–395. 38. Morozova, I.M. and Rublev, A.G., Kalii-argonovye sistemy polimetamorficheskikh porod (Potassium–Argon System of Polymetamorphic Rocks), Shukolyukov, Yu.A, Eds., Moscow: Nauka, 1987, pp. 19–28. 39. Ntaflos, T. and Richter, W., Geochemical constraints on the origin of the continental flood basalts magmatism in Franz Jozef Land, Arctic Russia, Eur. J. Mineral., 2003, vol. 15, pp. 649–663. DOI: 10.1127/0935-1221/2003/0015-0649 40. Piskarev, A.L., Heunemann, C.H., Makar'ev, A.A., Makar'eva, E.M., Bachtadze, V., and Aleksyutin, M., Magnetic parameters and variations in the composition of magmatic rocks from the Franz Josef Land Archipelago, Phys. Earth, 2009, no. 2, pp. 66–83. 41. Repin, Yu.S., Polubotko, I.V., Kirichkova, A.I., and Kulikova, N.K., Sedimentary Mesozoic of the Franz Josef Land Archipelago (FJL), Voprosy stratigrafii, paleontologii i paleogeografii (Problems of Stratigraphy, Paleontology, and Paleogeography), St, Petersburg: St. Petersb. Gos. Univ., 2007, pp. 56–76. 42. Saemundsson, K., Interglacial lava flows in the lowlands of southern Iceland and the problem of two-tiered columnar jointing, Jökull J., 1970, vol. 20, pp. 62–77. 43. Senger, K., Tveranger, J., Ogata, K., Braathen, A., and Planke, S., Late Mesozoic magmatism in Svalbard: a review, Earth-Sci. Rev., 2014, vol. 139, pp. 123–144. DOI: 10.1016/j.earscirev.2014.09.002 44. Shanin, L.L., Volkov, V.N., Litsarev, M.A., Arakelyants, M.M., Gol'tsman, Yu.V., Ivanenko, V.V., and Bairova, E.D., Kriterii nadezhnosti metodov radiologicheskogo datirovaniya (Criteria for Reliable Methods of Radiological Dating), Borsuk, A.M, Eds., Moscow: Nauka, 1979. 45. Shipilov, E.V. and Karyakin, Yu.V., The Barents sea magmatic province: geological-geophysical evidence and new 40Ar/39Ar dates, Dokl. Earth Sci., 2011, vol. 439, pp. 955–960. DOI: 10.1134/S1028334X11070270 46. Simonov, V.A., Karyakin, Yu.V., and Kotlyarov, A.V., Physical and chemical conditions of basaltic magmatism at the Franz Josef Land Archipelago, Geochem. Int., 2019, vol. 57, pp. 761–789. DOI: 10.1134/S0016702919070103 47. Sklyarov, E.V., Karyakin, Yu.V., Karmanov, N.S., and Tolstykh, N.D., Platinum-group minerals in dolerites from Alexandra Land Island (Franz Josef Land Archipelago), Russ. Geol. Geophys., 2016, vol. 57, no. 5, pp. 834–841. DOI: 10.1016/j.rgg.2016.04.006 48. Sklyarov, E.V., Karyakin, Yu.V., and Kanakin, S.V., Igneous carbonates in dolerites of Franz Joseph Land, Dokl. Earth Sci., 2017, vol. 472, pp. 109–112. DOI: 10.1134/S1028334X17010263 49. Solheim, A., Musatov, E., and Heintz, N., Geological evolution and correlation between Franz Josef Land and Svalbard. The Northern Barents Sea Geotraverse: introduction to the project, in Geological Aspects of Franz Josef Land and the Northernmost Barents Sea. The Barents Sea Geotraverse, Solheim, A., Musatov, E., and Heintz, N., Eds., Norsk Polarinstitutt Meddelelser, 1998, vol. 151, pp. 5–9. 50. Stolbov, N.M., On the age problem of the trap magmatism of the Franz Josef Land Archipelago: Geochronological data, Geologo-geofizicheskie kharakteristiki litosfery Arkticheskogo regiona (Geological-Geophysical Characeristics of Lithosphere of the Arctic Region), St. Petersburg: VNIIOkeangeologiya, 2002, vol. 4, pp. 199–202. 51. Stolbov, N.M., Magmatism of the Franz Josef Land Archipelago, Geodinamika, magmatizm, sedimentogenez i minerageniya severo-zapada Rossii (Geodynamics, Magmatism. Sedimentation, and Metallogeny of Northwestern Russia), Petrozavodsk, 2007, pp. 383–387. 52. Sun, S. and McDonough, W.F., Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes, Geol. Soc. Spec. Publ., 1989, vol. 42, pp. 313–345. DOI: 10.1144/GSL.SP.1989.042.01.19 53. Tarakhovskii, A.N., Fishman, M.V., Shkola, I.V., and Andreichev, V.L., Age of traps of the Franz Josef Land, Dokl. Akad. Nauk SSSR, 1982, vol. 266, no. 4, pp. 965–969. 54. Unifitsirovannaya stratigraficheskaya skhema yurskikh otlozhenii Russkoi platformy (Unified Stratigraphic Scheme of Jurassic Deposits of the Russian Platform), Yakovlev, S.P, Eds., St. Petersburg, 1983. 55. Unifitsirovannaya regional'naya stratigraficheskaya skhema yurskikh otlozhenii Vostochno-Evropeiskoi platform. Ob"yasnitel'naya zapiska (Unified Regional Stratigraphic Scale of Jurassic Deposits of the East European Platform. Explanatory Note). M.: PIN RAN - FGUP "VNIGNI", 2012. 56. Valentini, L., Moore, K.R., and Chazot, G., Unravelling carbonatite–silicate magma interaction dynamics: a case study from the Velay Province (Massif Central, France), Lithos, 2010, vol. 116, no. 1, pp. 53–64. DOI: 10.1016/j.lithos.2010.01.002 57. Verba, M.L., Modern bilateral extension of the crust in the Barents–Kara region and its role in assessment of petroleum prospects, Neftegaz. Geol. Teor. Praktika, 2007, vol. 2, pp. 1–37. 58. Verba, V.V. and Truhalev, A.I., Plume origin of the central arctic uplifts evolution in the Amerasian Basin of the Arctic Ocean, Russia, J. Earth. Sci., 2016, vol. 16, p. ES1002. 10.2205/2016ES000562 DOI: 10.2205/2016ES000562 59. Whitney, D.L. and Evans, B.V., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, no. 1, pp. 185–187. DOI: 10.2138/am.2010.3371