Инд. авторы: Abersteiner A., Kamenetsky V.S., Golovin A.V., Goemann K., Ehrig K.
Заглавие: Dissolution of mantle orthopyroxene in kimberlitic melts: Petrographic, geochemical and melt inclusion constraints from an orthopyroxenite xenolith from the Udachnaya-East kimberlite (Siberian Craton, Russia)
Библ. ссылка: Abersteiner A., Kamenetsky V.S., Golovin A.V., Goemann K., Ehrig K. Dissolution of mantle orthopyroxene in kimberlitic melts: Petrographic, geochemical and melt inclusion constraints from an orthopyroxenite xenolith from the Udachnaya-East kimberlite (Siberian Craton, Russia) // Lithos. - 2021. - Vol.398. - Art.106331. - ISSN 0024-4937. - EISSN 1872-6143.
Внешние системы: DOI: 10.1016/j.lithos.2021.106331; РИНЦ: 46921731; WoS: 000683478200002;
Реферат: eng: Reconstructing the original composition of kimberlite melts in the mantle and delineating the processes that modify them during magmatic ascent and emplacement in the crust remains a significant challenge in kimberlite petrology. One of the most significant processes commonly cited to drive initial kimberlite melts towards more Si-Mg-rich compositions and decrease the solubility of CO2 is the assimilation of mantle orthopyroxene. However, there is limited direct evidence to show the types of reactions that may occur between mantle orthopyroxene and the host kimberlite melt. To provide new constraints on the interaction between orthopyroxene and parental kimberlite melts, we examined a fresh (i.e. unmodified by secondary/post-magmatic alteration) orthopymxenite xenolith, which was recovered from the serpentine-free units of the Udachnaya-East kimberlite (Siberian Craton, Russia). This xenolith is composed largely of orthopymxene (similar to 90%), along with lesser olivine and clinopyroxene and rare aluminous magnesian chromite. We can show that this xenolith was invaded by the host kimberlite melt along grain interstices and fractures, where it partially reacted with orthopyroxene along the grain boundaries and replaced it with aggregates of compositionally distinct clinopyroxene, olivine and phlogopite, along with subordinate Fe-Cr-Mg spinel, Fe-Ni sulphides and djerfisherite (K-6(Fe,Ni,Cu)(25)S26Cl). Primary melt inclusions in clinopymxene replacing xenolith-forming orthopyroxene, as well as secondary melt inclusion trails in xenolith orthopymxene, clinopyroxene and olivine are composed of similar daughter mineral assemblages that consist largely of: Na-K chlorides, along with varying proportions of phlogopite, Fe-Cu-Ni sulphides, djerfisherite, rasvumite (KFe2S3), Cr-Fe-Mg spinel, nepheline and apatite, and rare rutile, sodalite, barite, olivine, Ca-K-Na carbonates and Na-K sulphates. The melt entrapped by these inclusions likely represent the hybrid products produced by the invading kimberlite melt reacting with orthopyroxene in the xenolith. The mechanism that could explain the partial replacement of orthopymxene in this xenolith by clinopyroxene, olivine and phlogopite could be attributed to the following reaction: Orthopyroxene + Carbonatitic (melt) Olivine + Clinopyroxene + Phlogopite + CO2. This reaction is supported by theoretical and experimental studies that advocate the dissolution of mantle orthopyroxene within an initially silica-poor and carbonate-rich kimberlite melt. The mineral assemblages replacing orthopyroxene in the xenolith, together with hosted melt inclusions, suggests that the kimberlitic melt prior to reaction with orthopyroxene was likely carbonate-rich and Na-K-Cl- S bearing. The paucity of carbonate in the reaction zones around orthopyroxene and in melt inclusions in clinopymxene replacing xenolith-forming orthopyroxene and xenolith minerals (orthopyroxene, clinopyroxene and olivine) is attributed to the consumption of carbonates and subsequent exsolution of CO2 by the proposed decarbonation reaction. Concluding, we propose that this orthopyroxenite xenolith provides a rare example of the types of reactions that can occur between mantle orthopyroxene and the host kimberlite melt. The preservation of this xenolith and zones around orthopyroxene present new insights into the composition and evolution of parental kimberlite melts and CO2 exsolution.
Ключевые слова: YAKUTIA; OLIVINE; PARENTAL MELTS; MAGMA EVOLUTION; SILICEOUS DOLOMITES; PERIDOTITE XENOLITHS; LITHOSPHERIC MANTLE; GROUP-I KIMBERLITES; Udachnaya-East; Melt inclusions; Decarbonation reactions; Orthopyroxene; Kimberlite; UNALTERED KIMBERLITES; PIPE;
Издано: 2021
Физ. характеристика: 106331
Цитирование: 1. Abersteiner, A., Giuliani, A., Kamenetsky, V.S., Phillips, D., Petrographic and melt-inclusion constraints on the petrogenesis of a magmaclast from the Venetia kimberlite cluster, South Africa. Chem. Geol. 455 (2017), 331–341, 10.1016/j.chemgeo.2016.08.029. 2. Abersteiner, A., Kamenetsky, V.S., Graham, D., Kamenetsky, M., Goemann, K., Ehrig, K., Rodemann, T., Monticellite in group-I kimberlites: implications for evolution of parental melts and post-emplacement CO 2 degassing. Chem. Geol. 478 (2018), 76–88, 10.1016/j.chemgeo.2017.06.037. 3. Abersteiner, A., Kamenetsky, V.S., Golovin, A.V., Kamenetsky, M., Goemann, K., Was crustal contamination involved in the formation of the serpentine-free Udachnaya-East kimberlite? New insights into parental melts, liquidus assemblage and effects of alteration. J. Petrol. 59 (2018), 1467–1492, 10.1016/j.chemgeo.2017.06.037. 4. Abersteiner, A., Kamenetsky, V.S., Goemann, K., Golovin, A.V., Sharygin, I.S., Pearson, D.G., Kamenetsky, M., Gornova, M.A., Polymineralic inclusions in kimberlite-hosted megacrysts: Implications for kimberlite melt evolution. Lithos 336-337 (2019), 310–325, 10.1016/j.lithos.2019.04.004. 5. Abersteiner, A., Kamenetsky, V.S., Goemann, K., Kjarsgaard, B.A., Rodemann, T., Kamenetsky, M., Ehrig, K., A genetic story of olivine crystallisation in the Mark kimberlite (Canada) revealed by zoning and melt inclusions. Lithos, 2020, 105405, 10.1016/j.lithos.2020.105405. 6. Agashev, A.M., Ionov, D.A., Pokhilenko, N.P., Golovin, A.V., Cherepanova, Y., Sharygin, I.S., Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160-161 (2013), 201–215, 10.1016/j.lithos.2012.11.014. 7. Alifirova, T.A., Pokhilenko, L.N., Ovchinnikov, Y.I., Donnelly, C.L., Riches, A.J.V., Taylor, L.A., Petrologic origin of exsolution textures in mantle minerals: evidence in pyroxenitic xenoliths from Yakutia kimberlites. Int. Geol. Rev. 54 (2012), 1071–1092, 10.1080/00206814.2011.623011. 8. Becker, M., le Roex, A.P., Geochemistry of South African On- and Off-craton, Group I and Group II Kimberlites: Petrogenesis and Source Region Evolution. J. Petrol. 47 (2006), 673–703, 10.1093/petrology/egi089. 9. Boyd, F.R., Pokhilenko, N.P., Pearson, D.G., Mertzman, S.A., Sobolev, N.V., Finger, L.W., Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib. Mineral. Petrol. 128 (1997), 228–246, 10.1007/s004100050305. 10. Brett, R.C., Russell, J.K., Andrews, G.D.M., Jones, T.J., The ascent of kimberlite: Insights from olivine. Earth Planet. Sci. Lett. 424 (2015), 119–131, 10.1016/j.epsl.2015.05.024. 11. Brey, G., Köhler, T., Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of existing Thermobarometers. J. Petrol. 31 (1990), 1353–1378, 10.1093/petrology/31.6.1353. 12. Brey, G., Kogarko, L., Ryabchikov, I., Carbon dioxide in kimberlitic melts. Neues Jahrb. Mineral, 1991, 159–168 Monatsh. 13. Bussweiler, Y., Polymineralic inclusions in megacrysts as proxies for Kimberlite melt evolution—a review. Minerals, 9(9), 2019, 530, 10.3390/min9090530. 14. Bussweiler, Y., Foley, S.F., Prelević, D., Jacob, D.E., The olivine macrocryst problem: New insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos 220-223 (2015), 238–252, 10.1016/j.lithos.2015.02.016. 15. Bussweiler, Y., Stone, R.S., Pearson, D.G., Luth, R.W., Stachel, T., Kjarsgaard, B.A., Menzies, A., The evolution of calcite-bearing kimberlites by melt-rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada. Contrib. Mineral Petrol., 171, 2016, 65, 10.1007/s00410-016-1275-3. 16. Giuliani, A., Phillips, D., Kamenetsky, V.S., Fiorentini, M.L., Farquhar, J., Kendrick, M.A., Stable isotope (C, O, S) compositions of volatile-rich minerals in kimberlites: a review. Chem. Geol. 374-375 (2014), 61–83, 10.1016/j.chemgeo.2014.03.003. 17. Giuliani, A., Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos 312-313 (2018), 322–342, 10.1016/j.lithos.2018.04.029. 18. Giuliani, A., Martin, L.A.J., Soltys, A., Griffin, W.L., Mantle-like oxygen isotopes in kimberlites determined by in situ SIMS analyses of zoned olivine. Geochim. Cosmochim. Acta 266 (2019), 274–291, 10.1016/j.gca.2019.03.032. 19. Giuliani, A., Pearson, D.G., Kimberlites: from deep earth to diamond mines. Elements 15:6 (2019), 377–380 Kimberlites: From Deep Earth to Diamond Mines. https://doi.org/10.2138/gselements.15.6.377. 20. Giuliani, A., Pearson, D.G., Soltys, A., Dalton, H., Phillips, D., Foley, S.F., Lim, E., Goemann, K., Griffin, W.L., Mitchell, R.H., Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation. Science Advances, 6, 2020, eaaz0424, 10.1126/sciadv.aaz0424. 21. Golovin, A.V., Melt Evolution Features during Crystallization of Kimberlites (Udachnaya-East Pipe, Yakutia) and Basanites (Bele Pipe, Khakasia) Based on Study of Melt Inclusions. PhD dissertation, 2004, UIGGM SD RAS, Novosibirsk (240 p). 22. Golovin, A.V., Sharygin, I.S., Kamenetsky, V.S., Korsakov, A.V., Yaxley, G.M., Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites. Chem. Geol. 483 (2018), 261–274, 10.1016/j.chemgeo.2018.02.016. 23. Golovin, A.V., Sharygin, I.S., Korsakov, A.V., Origin of alkaline carbonates in kimberlites of the Siberian craton: evidence from melt inclusions in mantle olivine of the Udachnaya-East kimberlite. Chem. Geol. 455 (2017), 357–375, 10.1016/j.chemgeo.2016.10.036. 24. Golovin, A.V., Sharygin, I.S., Korsakov, A.V., Kamenetsky, V.S., Abersteiner, A., Can primitive kimberlite melts be alkali-carbonate liquids: Composition of the melt snapshots preserved in deepest mantle xenoliths. J. Raman. Spectro. 57 (2020), 1849–1867, 10.1002/jrs.5701. 25. Golovin, A.V., Sharygin, V.V., Pokhilenko, N.P., Melt inclusions in olivine phenocrysts in unaltered kimberlites from the Udachnaya-East pipe, Yakutia: some aspects of kimberlite magma evolution during late crystallization stages. Petrology 15 (2007), 168–183, 10.1134/S086959110702004X. 26. Green, D.H., Wallace, M.E., Mantle metasomatism by ephemeral carbonatite melts. Nature 336 (1988), 459–462, 10.1038/336459a0. 27. Hunter, R.H., Taylor, L.A., Instability of garnet from the mantle: glass as evidence of metasomatic melting. Geology 10 (1982), 617–620, 10.1130/0091-7613(1982)10<617:IOGFTM>2.0.CO;2. 28. Ionov, D.A., Doucet, L.S., Ashchepkov, I.V., Composition of the Lithospheric Mantle in the Siberian Craton: New Constraints from Fresh Peridotites in the Udachnaya-East Kimberlite. J. Petrol. 51 (2010), 2177–2210, 10.1093/petrology/egq053. 29. Ionov, D.A., Liu, Z., Li, J., Golovin, A.V., Korsakov, A.V., Xu, Y., The age and origin of cratonic lithospheric mantle: Archean dunites vs. Paleoproterozoic harzburgites from the Udachnaya kimberlite, Siberian craton. Geochim. Cosmochim. Acta 281 (2020), 67–90, 10.1016/j.gca.2020.05.009. 30. Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., Maas, R., Danyushevsky, L.V., Thomas, R., Pokhilenko, N.P., Sobolev, N.V., Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology 32 (2004), 845–848, 10.1130/G20821.1. 31. Kamenetsky, V.S., Grutter, H., Kamenetsky, M.B., Goemann, K., Parental carbonatitic melt of the Koala kimberlite (Canada): constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chem. Geol. 353 (2013), 96–111, 10.1016/j.chemgeo.2012.09.022. 32. Kamenetsky, V.S., Kamenetsky, M.B., Sobolev, A.V., Golovin, A.V., Demouchy, S., Faure, K., Sharygin, V.V., Kuzmin, D.V., Olivine in the Udachnaya-East Kimberlite (Yakutia, Russia): Types, Compositions and Origins. J. Petrol. 49 (2008), 823–839, 10.1093/petrology/egm033. 33. Kamenetsky, V.S., Kamenetsky, M.B., Sobolev, A.V., Golovin, A.V., Sharygin, V.V., Pokhilenko, N.P., Sobolev, N.V., Can pyroxenes be liquidus minerals in the kimberlite magma?. Lithos 112S (2009), 213–222, 10.1016/j.lithos.2009.03.040. 34. Kamenetsky, V.S., Kamenetsky, M.B., Weiss, Y., Navon, O., Nielsen, T.F.D., Mernagh, T.P., How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos 112S (2009), 334–346, 10.1016/j.lithos.2009.03.032. 35. Kamenetsky, V.S., Maas, R., Kamenetsky, M.B., Paton, C., Phillips, D., Golovin, A.V., Gornova, M.A., Chlorine from the mantle: Magmatic halides in the Udachnaya-East kimberlite, Siberia. Earth Planet Sci. Lett. 285 (2009), 96–104, 10.1016/j.epsl.2009.06.001. 36. Kamenetsky, V.S., Belousova, E.A., Giuliani, A., Kamenetsky, M.B., Goemann, K., Griffin, W.L., Chemical abrasion of zircon and ilmenite megacrysts in the Monastery kimberlite: Implications for the composition of kimberlite melts. Chem. Geol. 383 (2014), 76–85, 10.1016/j.chemgeo.2014.06.008. 37. Kamenetsky, V.S., Golovin, A.V., Maas, R., Giuliani, A., Kamenetsky, M.B., Weiss, Y., Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth-Sci. Rev. 139 (2014), 145–167, 10.1016/j.earscirev.2014.09.004. 38. Kamenetsky, V.S., Yaxley, G.M., Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochim. Cosmochim. Acta 158 (2015), 48–56, 10.1016/j.gca.2015.03.004. 39. Käse, H.R., Metz, P., Experimental investigation of the metamorphism of siliceous dolomites. Contrib. Mineral. Petrol. 73 (1980), 151–159, 10.1007/BF00371390. 40. Kavanagh, J.L., Sparks, R.S.J., Temperature changes in ascending kimberlite magma. Earth Planet. Sci. Lett. 286 (2009), 404–413, 10.1016/j.epsl.2009.07.011. 41. Kinny, P.D., Griffin, B.J., Heaman, L.M., Brakhfogel, F.F., Spetsius, Z.V., SHRIMP U-Pb ages of perovskite from Yakutian kimberlites. Geol. Geofiz. 38 (1997), 91–99. 42. Kharkiv, A.D., Zuenko, V.V., Zinchuk, N.N., Kryuchkov, A.I., Ukhanov, A.V., Bogatykh, M.M., Petrochemistry of Kimberlites. 1991, Nedra, Moscow, 304. 43. Kopylova, M.G., Matveev, S., Raudsepp, M., Searching for parental kimberlite melt. Geochim. Cosmochim. Acta 71 (2007), 3616–3629, 10.1016/j.gca.2007.05.009. 44. Kopylova, M.G., Nowell, G.M., Pearson, D.G., Markovic, G., Crystallization of megacrysts from protokimberlitic fluids: Geochemical evidence from high-Cr megacrysts in the Jericho kimberlite. Lithos 112 (2009), 284–295, 10.1016/j.lithos.2009.06.008. 45. Kopylova, M.G., Kostrovitsky, S.I., Egorov, K.N., Salts in southern Yakutian kimberlites and the problem of primary alkali kimberlite melts. Earth Sci. Rev. 119 (2013), 1–16, 10.1016/j.earscirev.2013.01.007. 46. le Roex, A.P., Bell, D.R., Davis, P., Petrogenesis of Group I Kimberlites from Kimberley, South Africa: evidence from Bulk-rock Geochemistry. J. Petrol. 44 (2003), 2261–2286, 10.1093/petrology/egg077. 47. Lim, E., Giuliani, A., Phillips, D., Goemann, K., Origin of complex zoning in olivine from diverse, diamondiferous kimberlites and tectonic settings: Ekati (Canada), Alto Paranaiba (Brazil) and Kaalvallei (South Africa). Mineral. Petrol. 112 (2018), 539–554, 10.1007/s00710-018-0607-6. 48. Luth, R.W., The activity of silica in kimberlites, revisited. Contrib. Mineral. Petrol. 158 (2009), 283–294, 10.1007/s00410-009-0383-8. 49. Marshintsev, V.K., Vertical Heterogeneity of Kimberlite Bodies in Yakutia. 1986, Nauka, Novosibirsk, 239. 50. Mikhailenko, D., Golovin, A., Korsakov, A., Aulbach, S., Gerdes, A., Ragozin, A., Metasomatic Evolution of Coesite-Bearing Diamondiferous Eclogite from the Udachnaya Kimberlite. Minerals, 10, 2020, 383, 10.3390/min10040383. 51. Mitchell, R.H., Composition of olivine, silica activity and oxygen fugacity in kimberlite. Lithos 6 (1973), 65–81, 10.1016/0024-4937(73)90080-7. 52. Mitchell, R.H., Kimberlites: Mineralogy, Geochemistry and Petrology. 1986, Plenum Publishing Company, New York. 53. Moussallam, Y., Morizet, Y., Gaillard, F., H2O–CO2 solubility in low SiO2-melts and the unique mode of kimberlite degassing and emplacement. Earth Planet. Sci. Lett. 447 (2016), 151–160, 10.1016/j.epsl.2016.04.037. 54. Norris, A., Danyushevsky, L., Towards Estimating the Complete Uncertainty Budget of Quantified Results Measured by LA-ICP-MS, Goldschmidt, Boston, 2018-08-12. 2018. 55. Pilbeam, L.H., Nielsen, T.F.D., Waight, T.E., Digestion Fractional Crystallization (DFC): an Important Process in the Genesis of Kimberlites. Evidence from Olivine in the Majuagaa Kimberlite, Southern West Greenland. J. Petrol. 54 (2013), 1399–1425, 10.1093/petrology/egt016. 56. Pivin, M., Féménias, O., Demaiffe, D., Metasomatic mantle origin for Mbuji-Mayi and Kundelungu garnet and clinopyroxene megacrysts (Democratic Republic of Congo). Lithos 112 (2009), 951–960, 10.1016/j.lithos.2009.03.050. 57. Rezvukhin, D.I., Alifirova, T.A., Golovin, A.V., Korsakov, A.V., A Plethora of Epigenetic Minerals reveals a Multistage Metasomatic Overprint of a Mantle Orthopyroxenite from the Udachnaya Kimberlite. Minerals, 10, 2020, 264, 10.3390/min10030264. 58. Roeder, P.L., Schulze, D.J., Crystallization of Groundmass Spinel in Kimberlite. J. Petrol. 49 (2008), 1473–1495, 10.1093/petrology/egn034. 59. Russell, J.K., Porritt, L.A., Lavallee, Y., Dingwell, D.B., Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481 (2012), 352–356, 10.1038/nature10740. 60. Russell, J.K., Porritt, L.A., Hilchie, L., Kimberlite: Rapid Ascent of Lithospherically Modified Carbonatitic Melts. Pearson, D.G., Grütter, H.S., Harris, J.W., Kjarsgaard, B.A., O'Brien, H., Rao, N.V.C., Sparks, S., (eds.) Proceedings of 10th International Kimberlite Conference: Volume One, 2013, Springer India, New Delhi, 195–210. 61. Sharygin, I.S., Litasov, K.D., Shatskiy, A., Golovin, A.V., Ohtani, E., Pokhilenko, N.P., Melting phase relations of the Udachnaya-East Group-I kimberlite at 3.0–6.5 GPa: Experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes. Gondwana Res. 28 (2015), 1391–1414, 10.1016/j.gr.2014.10.005. 62. Sharygin, I.S., Litasov, K.D., Shatskiy, A., Safonov, O.G., Golovin, A.V., Ohtani, E., Pokhilenko, N.P., Experimental constraints on orthopyroxene dissolution in alkali carbonate melts in the lithospheric mantle: Implications for kimberlite melt composition and magma ascent. Chem. Geol. 455 (2017), 44–56, 10.1016/j.chemgeo.2016.09.030. 63. Sharygin, V.V., Golovin, A.V., Pokhilenko, N.P., Sobolev, N.V., Djerfisherite in unaltered kimberlites of the Udachnaya-East pipe, Yakutia. Dokl. Earth Sci. 390 (2003), 554–557. 64. Sharygin, V.V., Golovin, A.V., Pokhilenko, N.P., Kamenetsky, V.S., Djerfisherite in the Udachnaya-East pipe kimberlites (Sakha-Yakutia, Russia): paragenesis, composition and origin. Eur. J. Mineral. 19 (2007), 51–63, 10.1127/0935-1221/2007/0019-0051. 65. Shatskiy, A., Litasov, K.D., Sharygin, I.S., Ohtani, E., Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO 2 content at 6.5 GPa. Gondwana Res. 45 (2017), 208–227, 10.1016/j.gr.2017.02.009. 66. Shatskiy, A., Bekhtenova, A., Podborodnikov, I.V., Arefiev, A.V., Litasov, K.D., Metasomatic interaction of the eutectic Na- and K-bearing carbonate melts with natural garnet lherzolite at 6 GPa and 1100–1200°C: toward carbonatite melt composition in SCLM. Lithos, 374-375, 2020, 105725, 10.1016/j.lithos.2020.105725. 67. Sobolev, N.V., Sobolev, A.V., Tomilenko, A.A., Kovyazin, S.V., Batanova, V.G., Kuz'min, D.V., Paragenesis and complex zoning of olivine macrocrysts from unaltered kimberlite of the Udachnaya-East pipe, Yakutia: relationship with the kimberlite formation conditions and evolution. Russ. Geol. Geophys. 56 (2015), 260–279, 10.1016/j.rgg.2015.01.019. 68. Sokol, A.G., Kruk, A.N., Role of CO2 in the evolution of Kimberlite Magma: Experimental constraints at 5.5 GPa and 1200–1450 °C. Lithos, 2021, 386–387 106042 https://doi.org/10.1016/j.lithos.2021.106042. 69. Solov'eva, L.V., Lavrent'ev, Y.G., Egorov, K.N., Kostrovitskii, S.I., Korolyuk, V.N., Suvorova, L.F., The genetic relationship of the deformed peridotites and garnet megacrysts from kimberlites with asthenospheric melts. Russ. Geol. Geophys. 49 (2008), 207–224, 10.1016/j.rgg.2007.09.008. 70. Soltys, A., Giuliani, A., Phillips, D., Kamenetsky, V.S., Maas, R., Woodhead, J., Rodemann, T., In-situ assimilation of mantle minerals by kimberlitic magmas — Direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos 256-257 (2016), 182–196, 10.1016/j.lithos.2016.04.011. 71. Soltys, A., Giuliani, A., Phillips, D., Crystallisation sequence and magma evolution of the De Beers dyke (Kimberley, South Africa). Mineral. Petrol. 112 (2018), 503–518, 10.1007/s00710-018-0588-5. 72. Soltys, A., Giuliani, A., Phillips, D., A new approach to reconstructing the composition and evolution of kimberlite melts: a case study of the archetypal Bultfontein kimberlite (Kimberley, South Africa). Lithos 304-307 (2018), 1–15, 10.1016/j.lithos.2018.01.027. 73. Soltys, A., Giuliani, A., Phillips, D., Kamenetsky, V.S., Kimberlite Metasomatism of the Lithosphere and the Evolution of Olivine in Carbonate-rich Melts — evidence from the Kimberley Kimberlites (South Africa). J. Petrol., 61, 2020, egaa062, 10.1093/petrology/egaa062. 74. Stone, R.S., Luth, R.W., Orthopyroxene survival in deep carbonatite melts: implications for kimberlites. Contrib. Mineral. Petrol. 171 (2016), 1–9, 10.1007/s00410-016-1276-2. 75. Sun, S.-S., McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Saunders, A.D., Norry, M.J., (eds.) Magmatism in the Ocean Basins, 1989, Geological Society Special Publication, London, 313–345, 10.1144/GSL.SP.1989.042.01.19. 76. van Achterbergh, E., Griffin, W.L., Ryan, C.G., O'Reilly, S.Y., Pearson, N.J., Kivi, K., Doyle, B.J., Melt inclusions from the deep Slave lithosphere: implications for the origin and evolution of mantle-derived carbonatite and kimberlite. Lithos 76 (2004), 461–474, 10.1016/j.lithos.2004.04.007. 77. Wyllie, P.J., Huang, W.L., Peridotite, kimberlite, and carbonatite explained in the system CaO-MgO-SiO2-CO2. Geology 3:11 (1975), 621–624, 10.1130/0091-7613(1975)3<621:PKACEI>2.0.CO;2. 78. Wyllie, P.J., Huang, W.L., Otto, J., Byrnes, A.P., Carbonation of peridotites and decarbonation of siliceous dolomites represented in the system CaO-MgO-SiO2-CO2 to 30 kbar. Tectonophysics 100 (1983), 359–388, 10.1016/0040-1951(83)90194-4. 79. Yaxley, G.M., Crawford, A.J., Green, D.H., Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci. Lett. 107 (1991), 305–317, 10.1016/0012-821X(91)90078-V. 80. Zinchuk, N.N., Spetsius, Z.V., Zuenko, V.V., Zuev, V.M., The Udachnaya Kimberlite Pipe (in Russian). 1993, Publishing House of the Novosibirsk University, Novosibirsk, 147.