Инд. авторы: Palyanov Y.N., Borzdov Y.M., Khokhryakov A.F., Kupriyanov I.N.
Заглавие: High-pressure synthesis and characterization of diamond from europium containing systems
Библ. ссылка: Palyanov Y.N., Borzdov Y.M., Khokhryakov A.F., Kupriyanov I.N. High-pressure synthesis and characterization of diamond from europium containing systems // Carbon. - 2021. - Vol.182. - P.815-824. - ISSN 0008-6223. - EISSN 1873-3891.
Внешние системы: DOI: 10.1016/j.carbon.2021.06.081; РИНЦ: 46868492; WoS: 000684563200015;
Реферат: eng: Experimental studies have been carried out on diamond synthesis in Mg-based systems with additions of europium in various charge states, including Eu-0, Eu2+, and Eu3+. The experiments were carried out at a pressure of 7.8 GPa and a temperature of 1800 degrees C. Metallic Eu, Eu-oxalate, Eu-carbonate, Eu2O3, EuCl3, EuF3, and EuF2 were used as additives. The influence of the content of Eu-containing compounds on diamond crystallization and the photoluminescence characteristics of synthesized diamonds was determined. The addition of europium compounds to Mg-based systems in all cases had an integral inhibitory effect on the diamond crystallization process, which manifested in a decrease in the degree of graphite conversion to diamond, a decrease in the diamond growth rate, and the appearance of metastable graphite. It was found that the inhibiting ability of europium compounds decreased in the following sequence: Eu-oxalate > Eu-carbonate > EuCl3 > Eu2O3 > metallic Eu > EuF3 > EuF2. Spectroscopic studies of the synthesized diamonds revealed a new defect center manifesting in photoluminescence as an optical system with a zero-phonon line structure at 502 nm. The center was tentatively assigned to defects involving Eu impurities and the main factors controlling the formation of the 520 nm center were determined. (C) 2021 Elsevier Ltd. All rights reserved.
Ключевые слова: CENTERS; Photoluminescence; Defects; Crystal morphology; Crystallization; High-temperature; High-pressure; Diamond; Rare-earth ions; SPINS;
Издано: 2021
Физ. характеристика: с.815-824
Цитирование: 1. Takeuchi, S., Recent progress in single-photon and entangled-photon generation and applications. Jpn. J. Appl. Phys., 53, 2014, 10.7567/JJAP.53.030101 030101. 2. Orwa, J.O., Greentree, A.D., Aharonovich, I., Alves, A.D.C., Van Donkelaar, J., Stacey, A., Prawer, S., Fabrication of single optical centres in diamond - a review. J. Lumin. 130 (2010), 1646–1654, 10.1016/j.jlumin.2009.12.028. 3. Schloss, J.M., Barry, J.F., Turner, M.J., Walsworth, R.L., Simultaneous broadband vector magnetometry using solid-state spins. Phys. Rev. Appl., 10, 2018, 10.1103/PhysRevApplied.10.034044 034044. 4. Casola, F., van der Sar, T., Yacoby, A., Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater., 3, 2018, 10.1038/natrevmats.2017.88 17088. 5. Barnard, A.S., Diamond, Standard in diagnostics: nanodiamond biolabels make their mark. Analyst 134 (2009), 1751–1764, 10.1039/B908532G. 6. Mohan, N., Chen, C.S., Hsieh, H.H., Wu, Y.C., Chang, H.C., Vivo imaging and toxicity assessments of fluorescent nanodiamonds in caenorhabditis elegans. Nano Lett. 10 (2010), 3692–3699, 10.1021/nl1021909. 7. Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y., Wrachtrup, J., Material platforms for spin- based photonic quantum technologies. Nat. Rev. Mater. 3 (2018), 38–51, 10.1038/s41578-018-0008-9. 8. Wrachtrup, J., Jelezko, F., Processing quantum information in diamond. J. Phys. Condens. Matter 18 (2006), S807–S824, 10.1088/0953-8984/18/21/S08. 9. Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M.L., Twitchen, D.J., Pezzagna, S., Meijer, J., Twamley, J., Jelezko, F., Wrachtrup, J., Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 6 (2010), 249–253, 10.1038/nphys1536. 10. Chu, Y., Lukin, M.D., Quantum optics with nitrogen-vacancy centres in diamond. Fabre, C., Sandoghdar, V., Treps, N., Cugliandolo, L.F., (eds.) Quantum Optics and Nanophotonics, 2017, Oxford University Press, Oxford, UK, 229–270, 10.1093/oso/9780198768609.001.0001. 11. Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L.C.L., The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528 (2013), 1–45, 10.1016/j.physrep.2013.02.001. 12. Sipahigil, A., Jahnke, K.D., Rogers, L.J., Teraji, T., Isoya, J., Zibrov, A.S., Jelezko, F., Lukin, M. D., Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys. Rev. Lett., 113, 2014, 10.1103/PhysRevLett.113.113602 113602. 13. Sukachev, D.D., Sipahigil, A., Nguyen, C.T., Bhaskar, M.K., Evans, R.E., Jelezko, F., Lukin, M.D., Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett., 119, 2017, 10.1103/PhysRevLett.119.223602 223602. 14. Kennard, J.E., Hadden, J.P., Marseglia, L., Aharonovich, I., Castelletto, S., Patton, B.R., Politi, A., Matthews, J.C.F., Sinclair, A.G., Gibson, B.C., Prawer, S., Rarity, J.G., O'Brien, J.L., On-chip manipulation of single photons from a diamond defect. Phys. Rev. Lett., 111, 2013, 10.1103/PhysRevLett.111.213603 213603. 15. Siyushev, P., Metsch, M.H., Ijaz, A., Binder, J.M., Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Nguyen, C.T., Lukin, M.D., Hemmer, P.R., Palyanov, Y.N., Kupriyanov, I.N., Borzdov, Y.M., Rogers, L.J., Jelezko, F., Optical and microwave control of germanium-vacancy center spins in diamond. Phys. Rev. B, 96, 2017, 10.1103/PhysRevB.96.081201 081201(R). 16. Bhaskar, M.K., Sukachev, D.D., Sipahigil, A., Evans, R.E., Burek, M.J., Nguyen, C.T., Rogers, L. J., Siyushev, P., Metsch, M. H., Park, H., Jelezko, F., Lončar, M., Lukin, M. D., Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett., 118, 2017, 10.1103/PhysRevLett.118.223603 223603. 17. Iwasaki, T., Miyamoto, Y., Taniguchi, T., Siyushev, P., Metsch, M.H., Jelezko, F., Hatano, M., Tin-vacancy quantum emitters in diamond. Phys. Rev. Lett., 119, 2017, 10.1103/PhysRevLett.119.253601 253601. 18. Ekimov, E.A., Lyapin, S.G., Kondrin, M.V., Tin-vacancy color centers in micro- and polycrystalline diamonds synthesized at high pressures. Diam. Relat. Mater. 87 (2018), 223–227, 10.1016/j.diamond.2018.06.014. 19. Trusheim, M.E., Wan, N.H., Chen, K.C., Ciccarino, C.J., Flick, J., Sundararaman, R., Malladi, G., Bersin, E., Walsh, M., Lienhard, B., Bakhru, H., Narang, P., Englund, D., Lead-related quantum emitters in diamond. Phys. Rev. B, 99, 2019 075430. 20. Kenyon, A.J., Recent developments in rare-earth doped materials for optoelectronics. Prog. Quant. Electron. 26 (2002), 225–284, 10.1016/S0079-6727(02)00014-9. 21. Zhong, M., Hedges, M.P., Ahlefeldt, R.L., Bartholomew, J.G., Beavan, S.E., Wittig, S.M., Longdell, J.J., Sellarset, M.J., Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517 (2015), 177–180, 10.1038/nature14025. 22. Zhong, T., Goldner, P., Emerging rare-earth doped material platforms for quantum nanophotonics. Nanophotonics 8 (2019), 2003–2015, 10.1515/nanoph-2019-0185. 23. Magyar, A., Hu, W., Shanley, T., Flatte, M.E., Hu, E., Aharonovich, I., Synthesis of luminescent europium defects in diamond. Nat. Commun., 5, 2014, 3523, 10.1038/ncomms4523. 24. Vanpoucke, D.E.P., Nicley, S.S., Raymakers, J., Maes, W., Haenen, K., Can europium atoms form luminescent centres in diamond: a combined theoretical–experimental study. Diam. Relat. Mater. 94 (2019), 233–241, 10.1016/j.diamond.2019.02.024. 25. Cajzl, J., Akhetova, B., Nekvindova, P., Mackova, A., Malinsky, P., Oswald, J., Remes, Z., Varga, M., Kromka, A., Co-implantation of Er and Yb ions into single-crystalline and nanocrystalline diamond. Surf. Interface Anal. 50 (2018), 1218–1223, 10.1002/sia.6407. 26. Sedov, V.S., Kuznetsov, S.V., Ralchenko, V.G., Mayakova, M.N., Krivobok, V.S., Savin, S.S., Zhuravlev, K.P., Martyanov, A.K., Romanishkin, I.D., Khomich, A.A., Fedorov, P.P., Konov, V.I., Diamond-EuF3 nanocomposites with bright orange photoluminescence. Diam. Relat. Mater. 72 (2017), 47–52, 10.1016/j.diamond.2016.12.022. 27. Ekimov, E.A., Zibrov, I.P., Malykhin, S.A., Khmelnitskiy, R.A., Vlasov, I.I., Synthesis of diamond in double carbon-rare earth element systems. Mater. Lett. 193 (2017), 130–132, 10.1016/j.matlet.2017.01.110. 28. Palyanov, Y.N., Borzdov, Y.M., Khokhryakov, A.F., Kupriyanov, I.N., Effect of rare-earth element oxides on diamond crystallization in Mg-based systems. Crystals, 9, 2019, 300, 10.3390/cryst9060300. 29. Palyanov, Y.N., Borzdov, Y.M., Kupriyanov, I.N., Khokhryakov, A.F., Nechaev, D.V., Diamond crystallization from an Mg-C system at high pressure high temperature conditions. CrystEngComm 17 (2015), 4928–4936, 10.1039/C5CE00897B. 30. Palyanov, Y.N., Kupriyanov, I.N., Borzdov, Y.M., Khokhryakov, A.F., Surovtsev, N.V., High-pressure synthesis and characterization of Ge-doped single crystal diamond. Cryst. Growth Des. 16 (2016), 3510–3518, 10.1021/acs.cgd.6b00481. 31. Palyanov, Y.N., Kupriyanov, I.N., Khokhryakov, A.F., Borzdov, Y.M., High-pressure crystallization and properties of diamond from magnesium-based catalysts. CrystEngComm 19 (2017), 4459–4475, 10.1039/c7ce01083d. 32. Palyanov, Y.N., Kupriyanov, I.N., Borzdov, Y.M., High-pressure synthesis and characterization of Sn-doped single crystal diamond. Carbon 143 (2019), 769–775, 10.1016/j.carbon.2018.11.084. 33. Palyanov, Y., Kupriyanov, I., Khokhryakov, A., Ralchenko, V., second ed. Rudolph, P., (eds.) Handbook of Crystal Growth, vol. 2a, 2015, Elsevier, Amsterdam, 671–713, 10.1016/B978-0-444-63303-3.00017-1 ch.17. 34. Palyanov, Y.N., Kupriyanov, I.N., Borzdov, Y.M., Bataleva, Y.V., High-pressure synthesis and characterization of diamond from an Mg–Si–C system. CrystEngComm 17 (2015), 7323–7331, 10.1039/C5CE01265A. 35. Palyanov, Y., Kupriyanov, I., Borzdov, Y., Nechaev, D., Bataleva, Y., HPHT diamond crystallization in the Mg-Si-C system: effect of Mg/Si composition. Crystals, 7, 2017, 119, 10.3390/cryst7050119. 36. Nadolinny, V., Komarovskikh, A., Palyanov, Y., Kupriyanov, I., Borzdov, Y., Rakhmanova, M., Yuryeva, O., Veber, S., EPR study of Si- and Ge-related defects in HPHT diamonds synthesized from Mg-based solvent-catalysts. Phys. Status Solidi 213 (2016), 2623–2628, 10.1002/pssa.201600211. 37. Khokhryakov, A.F., Borzdov, Y.M., Kupriyanov, I.N., High-pressure diamond synthesis in the presence of rare-earth metals. J. Cryst. Growth, 531, 2020, 10.1016/j.jcrysgro.2019.125358 125358. 38. Palyanov, Y.N., Kupriyanov, I.N., Borzdov, Y.M., Nechaev, D.V., Effect of the solvent-catalyst composition on diamond crystallization in the Mg-Ge-C system. Diam. Relat. Mater. 89 (2018), 1–9, 10.1016/j.diamond.2018.08.002. 39. Dieke, G.H., Spectra and Energy Levels of Rare Earth Ions in Crystals. 1968, Interscience, New York. 40. Hüfner, S., Optical Spectra of Transparent Rare Earth Compounds. 1978, Academic Press, New York. 41. Binnemans, K., Interpretation of europium (III) spectra. Coord. Chem. Rev. 295 (2015), 1–45, 10.1016/j.ccr.2015.02.015.