Инд. авторы: Ishteev A., Luchnikov L., Muratov D.S., Voronova M., Forde A., Inerbaev T.M., Vanyushin V., Saranin D., Yusupov K., Kuznetsov D.
Заглавие: Single source chemical vapor deposition (ssCVD) for highly luminescent inorganic halide perovskite films
Библ. ссылка: Ishteev A., Luchnikov L., Muratov D.S., Voronova M., Forde A., Inerbaev T.M., Vanyushin V., Saranin D., Yusupov K., Kuznetsov D. Single source chemical vapor deposition (ssCVD) for highly luminescent inorganic halide perovskite films // Applied Physics Letters. - 2021. - Vol.119. - Iss. 7. - Art.071901. - ISSN 0003-6951. - EISSN 1077-3118.
Внешние системы: DOI: 10.1063/5.0055993; РИНЦ: 47008621; РИНЦ: 47008621; WoS: 000685161900004;
Реферат: eng: Recent studies of lead halide perovskites demonstrate outstanding optoelectronic properties for thin-film semiconductor device application. Perovskite photovoltaic and light-emitting diodes are on the way to the mass production and spread in commercial semiconductor devices. The lab-to-fab transition of perovskite devices requires adaptation of perovskite deposition methods to industrial semiconductor fabrication standards. In this work, we demonstrated the formation of highly luminescence perovskite films by single-source chemical vapor deposition (ssCVD). Several stoichiometry compositions were prepared from inorganic precursors of CsBr and PbBr2 by dry mechanochemical synthesis with following evaporation. The combination of mechanochemical synthesis and ssCVD is an attractive approach due to the ability to scale up to industrial level and the precise control over the evaporation rate with a single source. Among all compositions CsBr:PbBr2, we show that CsPb2Br5 maintains phase composition and photoluminescent properties for powder and film. This work provides a comparative study of evaporated film properties (PL, XRD, TEM) and modeling calculations of interphase optical transitions.
Ключевые слова: MODULES; EFFICIENT; LEAD BROMIDE; TANDEM SOLAR-CELLS; CESIUM; CS;
Издано: 2021
Физ. характеристика: 071901
Цитирование: 1. D. B. Mitzi, Chem. Rev. 119, 3033 (2019). 10.1021/acs.chemrev.8b00800 2. N. Y. Nia, F. Matteocci, L. Cina, and A. D. Carlo, ChemSusChem 10, 3854 (2017). 10.1002/cssc.201700635 3. Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X. Y. Zhu, and S. Jin, Nat. Rev. Mater. 4, 169 (2019). 10.1038/s41578-019-0080-9 4. S. Makarov, A. Furasova, E. Tiguntseva, A. Hemmetter, A. Berestennikov, A. Pushkarev, A. Zakhidov, and Y. Kivshar, Adv. Opt. Mater. 7, 1800784 (2019). 10.1002/adom.201800784 5. T. Kirchartz, J. A. Márquez, M. Stolterfoht, and T. Unold, Adv. Energy Mater. 10, 1904134 (2020). 10.1002/aenm.201904134 6. S. D. Stranks, R. L. Z. Hoye, D. Di, R. H. Friend, and F. Deschler, Adv. Mater. 31, 1803336 (2018). 10.1002/adma.201803336 7. L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T. W. Lee, and E. H. Sargent, Chem. Rev. 119, 7444 (2019). 10.1021/acs.chemrev.9b00107 8. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, Nature 592, 381 (2021). 9. See https://www.nrel.gov/pv/cell-efficiency.html for the NREL Best Research-Cell Efficiency Chart (Last accessed June 21, 2021). 10. X. K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang, R. H. Friend, and F. Gao, Nat. Mater. 20, 10 (2020). 10.1038/s41563-020-0784-7 11. Z. Fang, W. Chen, Y. Shi, J. Zhao, S. Chu, J. Zhang, and Z. Xiao, Adv. Funct. Mater. 30, 1909754 (2020). 10.1002/adfm.201909754 12. K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, and Z. Wei, Nature 562, 245 (2018). 10.1038/s41586-018-0575-3 13. M. Jiang, Z. Hu, L. K. Ono, and Y. Qi, Nano Res. 14, 191 (2020). 10.1007/s12274-020-3065-5 14. C. Li, H. Wang, F. Wang, T. Li, M. Xu, H. Wang, Z. Wang, X. Zhan, W. Hu, and L. Shen, Light: Sci. Appl. 9, 31 (2020). 10.1038/s41377-020-0264-5 15. M. Ahmadi, T. Wu, and B. Hu, Adv. Mater. 29, 1605242 (2017). 10.1002/adma.201605242 16. M. Auf Der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. D. Carlo, Phys. Rev. Lett. 116, 027401 (2016). 10.1103/PhysRevLett.116.027401 17. M. Lu, Y. Zhang, S. Wang, J. Guo, W. W. Yu, and A. L. Rogach, Adv. Funct. Mater. 29, 1902008 (2019). 10.1002/adfm.201902008 18. E. Köhnen, M. Jošt, A. B. Morales-Vilches, P. Tockhorn, A. Al-Ashouri, B. Macco, L. Kegelmann, L. Korte, B. Rech, R. Schlatmann, B. Stannowski, and S. Albrecht, Sustainable Energy Fuels 3, 1995 (2019). 10.1039/C9SE00120D 19. F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, Nat. Mater. 17, 820 (2018). 10.1038/s41563-018-0115-4 20. P. Tockhorn, P. Wagner, L. Kegelmann, J. C. Stang, M. Mews, S. Albrecht, and L. Korte, ACS Appl. Energy Mater. 3, 1381 (2020). 10.1021/acsaem.9b01800 21. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009). 10.1021/ja809598r 22. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. Il Seok, Nat. Mater. 13, 897 (2014). 10.1038/nmat4014 23. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013). 10.1038/nature12340 24. N. A. N. Ouedraogo, Y. Chen, Y. Y. Xiao, Q. Meng, C. B. Han, H. Yan, and Y. Zhang, Nano Energy 67, 104249 (2020). 10.1016/j.nanoen.2019.104249 25. F. De Matteis, F. Vitale, S. Privitera, E. Ciotta, R. Pizzoferrato, A. Generosi, B. Paci, L. D. Mario, J. S. P. Cresi, F. Martelli, and P. Prosposito, Crystals 9, 280 (2019). 10.3390/cryst9060280 26. D. Huang, P. Xie, Z. Pan, H. Rao, and X. Zhong, J. Mater. Chem. A 7, 22420 (2019). 10.1039/C9TA08465G 27. G. Jiang, C. Guhrenz, A. Kirch, L. Sonntag, C. Bauer, X. Fan, J. Wang, S. Reineke, N. Gaponik, and A. Eychmüller, ACS Nano 13, 10386 (2019). 10.1021/acsnano.9b04179 28. S. Fisher, M. Hammond, and N. Sandler, in Emerging Semiconductor Technology, edited by D. C. Gupta (ASTM International, West Conshohocken, PA, 2008), pp. 33. 29. L. Cojocaru, K. Wienands, T. W. Kim, S. Uchida, A. J. Bett, S. Rafizadeh, J. C. Goldschmidt, and S. W. Glunz, ACS Appl. Mater. Interfaces 10, 26293 (2018). 10.1021/acsami.8b07999 30. M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013). 10.1038/nature12509 31. Y. Hu, Q. Wang, Y. L. Shi, M. Li, L. Zhang, Z. K. Wang, and L. S. Liao, J. Mater. Chem. C 5, 8144 (2017). 10.1039/C7TC02477K 32. S. Xie, A. Osherov, and V. Bulović, APL Mater. 8, 051113 (2020). 10.1063/1.5144103 33. K. Sim, T. Jun, J. Bang, H. Kamioka, J. Kim, H. Hiramatsu, and H. Hosono, Appl. Phys. Rev. 6, 030401 (2019). 10.1063/1.5098871 34. G. Longo, C. Momblona, M. G. La-Placa, L. Gil-Escrig, M. Sessolo, and H. J. Bolink, ACS Energy Lett. 3, 214 (2018). 10.1021/acsenergylett.7b01217 35. H. Y. Lin, C. Y. Chen, B. W. Hsu, Y. L. Cheng, W. L. Tsai, Y. C. Huang, C. S. Tsao, and H. W. Lin, Adv. Funct. Mater. 29, 1905163 (2019). 10.1002/adfm.201905163 36. M. Ohring, Mater. Sci. Thin Film 1, 277 (2002). 10.1016/B978-012524975-1/50009-4 37. M. G. Peters, J. M. Pinneo, K. V. Ravi, L. S. Plano, and CRYSTALLUME MENLO PARK CA, PECVD (Plasma Enhanced Chemical Vapor Deposition) Diamond Thin Films for Research Instrumentation (Defense Technical Information Center, 1988). 38. L. Zhao, W. Zhang, J. Chen, H. Diao, Q. Wang, and W. Wang, Front. Energy 11, 85 (2017). 10.1007/s11708-016-0437-3 39. M. Messer, D. Andrew, M. Deborah, L. Aimee, R. David, B. John, B. David, D. Russell, S. Darlene, A. Mary Jane, G. William, H. John, and A. Michael, Crystalline Silicon Photovoltaic Cells (US International Trade Commission, 2017); available at https://www.usitc.gov/publications/safeguards/pub4739-vol_i.pdf 40. C. H. Hsu, Y. S. Lin, H. Y. Wu, X. Y. Zhang, W. Y. Wu, S. Y. Lien, D. S. Wuu, and Y. L. Jiang, Nanomaterials 9, 1053 (2019). 10.3390/nano9071053 41. M. N. Van Den Donker, A. Gordijn, H. Stiebig, F. Finger, B. Rech, and B. Stannowski, Solar Energy Materials and Solar Cells 91, 572 (2007). 10.1016/j.solmat.2006.11.012 42. E. Terukov, A. Kosarev, A. Abramov, and E. Malchukova, Sol. Panels Photovoltaics Mater. 5, 61 (2018). 10.1016/j.solmat.2006.11.012 43. L. Qiu, S. He, Y. Jiang, D. Y. Son, L. K. Ono, Z. Liu, T. Kim, T. Bouloumis, S. Kazaoui, and Y. Qi, J. Mater. Chem. A 7, 6920 (2019). 10.1039/C9TA00239A 44. C. P. Clark, J. E. Mann, J. S. Bangsund, W.-J. Hsu, E. S. Aydil, and R. J. Holmes, ACS Energy Lett. 5, 3443 (2020). 10.1021/acsenergylett.0c01609 45. P. Luo, S. Zhou, W. Xia, J. Cheng, C. Xu, and Y. Lu, Adv. Mater. Interfaces 4, 1600970 (2017). 10.1002/admi.201600970 46. J. Yin, H. Qu, J. Cao, H. Tai, J. Li, and N. Zheng, J. Mater. Chem. A 4, 13203 (2016). 10.1039/C6TA04465D 47. M. R. Leyden, L. K. Ono, S. R. Raga, Y. Kato, S. Wang, and Y. Qi, J. Mater. Chem. A 2, 18742 (2014). 10.1039/C4TA04385E 48. M. R. Leyden, Y. Jiang, and Y. Qi, J. Mater. Chem. A 4, 13125 (2016). 10.1039/C6TA04267H 49. M. R. Leyden, L. Meng, Y. Jiang, L. K. Ono, L. Qiu, E. J. Juarez-Perez, C. Qin, C. Adachi, and Y. Qi, J. Phys. Chem. Lett. 8, 3193 (2017). 10.1021/acs.jpclett.7b01093 50. M. M. Tavakoli, L. Gu, Y. Gao, C. Reckmeier, J. He, A. L. Rogach, Y. Yao, and Z. Fan, Sci. Rep. 5, 14083 (2015). 10.1038/srep14083 51. L. Nasi, D. Calestani, F. Mezzadri, F. Mariano, A. Listorti, P. Ferro, M. Mazzeo, and R. Mosca, Front. Chem. 8, 313 (2020). 10.3389/fchem.2020.00313 52. M. J. Crane, D. M. Kroupa, J. Y. Roh, R. T. Anderson, M. D. Smith, and D. R. Gamelin, ACS Appl. Energy Mater. 2, 4560 (2019). 10.1021/acsaem.9b00910 53. S. Sanders, D. Stümmler, P. Pfeiffer, N. Ackermann, G. Simkus, M. Heuken, P. K. Baumann, A. Vescan, and H. Kalisch, Sci. Rep. 9, 9774 (2019). 10.1038/s41598-019-46199-4 54. S. Sanders, G. Simkus, J. Riedel, A. Ost, A. Schmitz, F. Muckel, G. Bacher, M. Heuken, A. Vescan, and H. Kalisch, J. Mater. Res. 36, 1813 (2021). 10.1557/s43578-021-00239-w 55. D. Prochowicz, M. Saski, P. Yadav, M. Grätzel, and J. Lewiński, Acc. Chem. Res. 52, 3233 (2019). 10.1021/acs.accounts.9b00454 56. L. Martínez-Sarti, F. Palazon, M. Sessolo, and H. J. Bolink, Adv. Opt. Mater. 8, 1901494 (2020). 10.1002/adom.201901494 57. Y. Zou, Z. Yuan, S. Bai, F. Gao, and B. Sun, Mater. Today Nano 5, 100028 (2019). 10.1016/j.mtnano.2019.100028 58. M. Sessolo, L. Gil-Escrig, G. Longo, and H. J. Bolink, Top. Curr. Chem. 374, 19 (2016). 10.1007/s41061-016-0051-1 59. N. Armaroli and H. J. Bolink, Top. Curr. Chem. 374, 44 (2016). 10.1007/s41061-016-0044-0 60. I. Y. Kuznetsova, I. S. Kovaleva, and V. A. Fedorov, Russ. J. Inorg. Chem. 46, 1730 (2001). 61. C. K. Moller, Nature 182, 1436 (1958). 10.1038/1821436a0 62. R. W. G. Wyckoff, Cryst. Struct. 18, 139 (1965). 10.1107/S0365110X650003 63. M. I. Saidaminov, J. M. Almutlaq, S. Sarmah, I. Dursun, A. A. Zhumekenov, R. Begum, J. Pan, N. Cho, O. F. Mohammed, and O. M. Bakr, ACS Energy Lett. 1, 840 (2016). 10.1021/acsenergylett.6b00396 64. M. Cola, V. Massarotti, R. Riccardi, and C. Sinistri, Z. Naturforsch. 26, 1328 (1971). 10.1515/zna-1971-0812 65. A. Ray, D. Maggioni, D. Baranov, Z. Dang, M. Prato, Q. A. Akkerman, L. Goldoni, E. Caneva, L. Manna, and A. L. Abdelhady, Chem. Mater. 31, 7761 (2019). 10.1021/acs.chemmater.9b02944 66. Z. Gan, F. Zheng, W. Mao, C. Zhou, W. Chen, U. Bach, P. Tapping, T. W. Kee, J. A. Davis, B. Jia, and X. Wen, Nanoscale 11, 14676 (2019). 10.1039/C9NR04787E 67. M. De Bastiani, I. Dursun, Y. Zhang, B. A. Alshankiti, X. H. Miao, J. Yin, E. Yengel, E. Alarousu, B. Turedi, J. M. Almutlaq, M. I. Saidaminov, S. Mitra, I. Gereige, A. Alsaggaf, Y. Zhu, Y. Han, I. S. Roqan, J. L. Bredas, O. F. Mohammed, and O. M. Bakr, Chem. Mater. 29, 7108 (2017). 10.1021/acs.chemmater.7b02415 68. P. Zeng, L. Wei, H. Zhao, R. Zhang, H. Chen, and M. Liu, J. Mater. Chem. C 8, 9358 (2020). 10.1039/D0TC01604G 69. P. Acharyya, P. Pal, P. K. Samanta, A. Sarkar, S. K. Pati, and K. Biswas, Nanoscale 11, 4001 (2019). 10.1039/C8NR09349K 70. J. Yin, H. Yang, K. Song, A. M. El-Zohry, Y. Han, O. M. Bakr, J. L. Brédas, and O. F. Mohammed, J. Phys. Chem. Lett. 9, 5490 (2018). 10.1021/acs.jpclett.8b02477 71. B. Turedi, K. J. Lee, I. Dursun, B. Alamer, Z. Wu, E. Alarousu, O. F. Mohammed, N. Cho, and O. M. Bakr, J. Phys. Chem. C 122, 14128 (2018). 10.1021/acs.jpcc.8b01343 72. G. Shao, Y. Zhao, Y. Yu, H. Yang, X. Liu, Y. Zhang, W. Xiang, and X. Liang, J. Mater. Chem. C 7, 13585 (2019). 10.1039/C9TC04442F 73. C. Qin, T. Matsushima, A. S. D. Sandanayaka, Y. Tsuchiya, and C. Adachi, J. Phys. Chem. Lett. 8, 5415 (2017). 10.1021/acs.jpclett.7b02371 74. I. Dursun, M. De Bastiani, B. Turedi, B. Alamer, A. Shkurenko, J. Yin, A. M. El-Zohry, I. Gereige, A. AlSaggaf, O. F. Mohammed, M. Eddaoudi, and O. M. Bakr, ChemSusChem 10, 3746 (2017). 10.1002/cssc.201701131 75. H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, C. M. M. Soe, J. Yoo, J. Crochet, S. Tretiak, J. Even, A. Sadhanala, G. Azzellino, R. Brenes, P. M. Ajayan, V. Bulović, S. D. Stranks, R. H. Friend, M. G. Kanatzidis, and A. D. Mohite, Adv. Mater. 30, 1704217 (2017). 10.1002/adma.201704217 76. G. H. Ahmed, J. Yin, O. M. Bakr, and O. F. Mohammed, ACS Energy Lett. 6, 1340 (2021). 10.1021/acsenergylett.1c00076 77. O. H.-C. Cheng, T. Qiao, M. Sheldon, and D. H. Son, Nanoscale 12, 13113 (2020). 10.1039/D0NR02711A