Инд. авторы: Mashkovtsev R.I., Rakhmanova M.I., Zedgenizov D.A.
Заглавие: Specific spectroscopic features of yellow cuboid diamonds from placers in the north-eastern Siberian Platform
Библ. ссылка: Mashkovtsev R.I., Rakhmanova M.I., Zedgenizov D.A. Specific spectroscopic features of yellow cuboid diamonds from placers in the north-eastern Siberian Platform // Journal of Geosciences (Japan). - 2021. - Vol.66. - Iss. 2. - P.117-126. - ISSN 1802-6222. - EISSN 1803-1943.
Внешние системы: DOI: 10.3190/jgeosci.323; РИНЦ: 46961959; WoS: 000677614600004;
Реферат: eng: A series of yellow cuboid diamonds from alluvial placers in the north-eastern Siberian platform have been examined with Fourier-transform infrared (FTIR) absorption spectroscopy, photoluminescence (PL) and electron paramagnetic resonance (EPR). All crystals having characteristic FTIR spectra with predominantly C and A centres belong to mixed type IaA/Ib with small total nitrogen content (up to 330 ppm). PL is characterized by many bands with two bands related to the NV0 and NV- centres common to all the samples. The FTIR spectra are also characterized by deformation-induced 'amber' centers. Some of the yellow diamonds studied show new bands at 4272, 4548, and 5960 cm(-1) instead of the bands at 4060 and 4170 cm(-1) common for 'amber' centres. An EPR study has revealed the presence of OK1 centres associated with titanium impurity. The plastic deformation of the studied diamonds is expressed as a 'tatami' strain pattern in the features of their internal structure.
Ключевые слова: COLOR; CARBON ISOTOPES; SINGLE NITROGEN; OPTICAL-CENTERS; NATURAL DIAMONDS; INTERNAL STRUCTURE; NITROGEN AGGREGATE; CUBIC DIAMONDS; Siberian platform; nitrogen; defects; cuboid; diamond; INFRARED-ABSORPTION; DEFECTS;
Издано: 2021
Физ. характеристика: с.117-126
Цитирование: 1. Boyd SR, Kiflawi I, Woods GS (1995) Infrared absorption by the B nitrogen aggregate in diamond. Philos Mag B72: 351–361 2. Charles SJ, Steeds JW, Butler JE, Evans DJF (2003) Optical centers introduced in boron-doped synthetic diamond by near-threshold electron irradiation. J Appl Phys 94: 3094–3100 3. Collins AT (1982) Colour centres in diamond. J Gemmol 18: 37–75 4. Czelej K, Ćwieka K, Śpiewak P, Jan Kurzydłowski K (2018). Titanium-related color centers in diamond: a density functional theory prediction. J Mater Chem C 6: 5261–5268 5. Davies G (1976) The A nitrogen aggregate in diamond – its symmetry and possible structure. J Phys C: Solid State Phys 9: L537 6. Dobrinets IA, Vins VG, Zaitsev AM (2013) HPHT-treated diamonds: diamonds forever. Springer Series in Materials Science 181, Springer, Berlin, pp 1–257 7. Doherty MW, Manson NB, Neil B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg LCL (2013) The nitrogen-vacancy colour centre in diamond. Phys Rep 528: 1–45 8. DuPreez L (1965) Electron paramagnetic resonance and optical investigations of defect centres in diamond. PhD Thesis, Univ of Witwatersrand, Johannesburg 9. Etmimi KM, Goss JP, Briddon PR, Gsiea AM (2010) A density functional theory study of models for the N3 and OK1 EPR centres in diamond. J Phys: Condens Matter 22: 385502 10. Fedorova EN, Logvinova AM, Mashkovtsev RI, Sobolev NV (2013) Internal structure and color of the natural plas-tically deformed diamonds from the Internatsionalnaya kimberlite pipe. In: Pearson DG et al. (eds) Proceedings of 10th International Kimberlite Conference. Special Is-sue J Geol Soc India. Geol Soc India Vol.1, pp 323–333 11. Gaillou E, Post J, Bassim N, Zaitsev AM, Rose T, Fries M, Stroud RM, Steele A, Butler JE (2010) Spectroscopic and microscopic characterization of color lamel-lae in natural pink diamonds. Diamond Relat Mater 19: 1207–1220 12. Goss JP, Briddon PR, Hill V, Jones R, Rayson MJ (2014) Identification of the structure of the 3107 cm-1 H-related defect in diamond. J Phys: Condens Matter 26: 145801 13. Grakhanov SA, Shatalov VI, Shtyrov VA, Kychkin VR, Suleimanov AM (2007). In: Dodin DA (ed) Diamond Placers of Russia. Akademicheskoe Izd. “Geo”: Novo-sibirsk, Russia, pp 454 (In Russian) 14. Hainschwang T, Notari F, Fritsch E, Massi L (2006) Natural, untreated diamonds showing the A, B and C infrared absorptions (“ABC” diamonds) and the H2 absorption. Diam Relat Mater 15: 1555–1564 15. Hainschwang T, Fritsch E, Notari F, Rondeau B (2012) A new defect center in type Ib diamond inducing one phonon infrared absorption. Diamond Relat Mater 21: 120–126 16. Hainschwang T, Fritsch E, Notari F, Rondeau B, Ka-trusha A (2013) The origin of color in natural C center bearing diamonds. Diamond Relat Mater 39: 27–40 17. Hull D, Bacon DJ (1984) Introduction to dislocations. Pergamon Press, Oxford, pp 1–257 18. Kiflawi I, Mayer AE, Spear PM, Van Wyk JA, Woods GS (1994) Infrared absorption by the single nitrogen and A defect centres in diamond. Philos Mag B69: 1141–1147 19. Klingsporn PE, Bell MD, Leivo WJ (1970) Analysis of an electron spin resonance spectrum in natural diamonds. J Appl Phys 41: 2977–2980 20. Lang AR (1974) Space-filling by branching columnar single-crystal growth: An example from crystallization of diamond. J Cryst Growth 23: 151–153 21. Lawson SC, Fisher D, Hunt DC, Newton ME (1998) On the existence of positively charged substitutional nitrogen in diamond. J Phys: Condens Matter 10: 6171–6180 22. Massi L, Fritsch E, Collins AT, Hainschwang T, Notari F (2005) The "amber centres" and their relation to the brown colour in diamond. Diamond Relat Mater 14: 1623–1629 23. Mineeva RM, Zudina NN, Titkov SV, Ryabchikov ID, Speransky AV, Zudin NG (2013) EPR-spectroscopy of diamonds of cubic habit from the placers in the NorthEast of the Siberian platform: new type of nitrogen centers. Dokl Earth Sci 448: 243–247 24. Moore M, Lang AR (1972) On the internal structure of natural diamonds of cubic habit. Philos Mag 26: 1313–1325 25. Nadolinny V, Yuryeva O, Chepurov A, Shatsky V (2009a) Titanium ions in the diamond structure: model and experimental evidence. Appl Magn Reson 36: 109–113 26. Nadolinny VA, Yuryeva OP, Shatsky VS, Stepanov AS, Golushko VV, Rakhmanova MI, Kupriyanov IN, Kalinin AA, Palyanov YN, Zedgenizov DA (2009b) New data on the nature of the EPR OK1 and N3 centers in diamond. Appl Magn Reson 36: 97–108 27. Nadolinny VA, Yuryeva OP, Rakhmanova MI, Shatsky VS, Palyanov YN, Kupriyanov IN, Zedgenizov DA, Ragozin AL (2012) Distribution of OK1, N3 and NU1 defects in diamond crystals of different habits. Eur J Miner 24: 645–650 28. Nadolinny V, Palyanov Y, Yuryeva O, Zedgenizov D, Rakhmanova M, Kalinin A, Komarovskikh A (2015) The influence of HTHP treatment on the OK1 and N3 centers in natural diamond crystals. Phys Stat Solidi A212: 2474–2479 29. Nasdala L, Grambole D, Wildner M, Gigler AM, Hainschwang T, Zaitsev AM, Harris JW, Milledge J, Schulze DJ, Hofmeister W, Balmer WA (2013) Radio-colouration of diamond: a spectroscopic study. Contrib Mineral Petrol 165 (5): 843–861 30. Newton EM, Baker JM (1989)14N ENDOR of the OK1 centre in natural type Ib diamond. J Phys: Condens Matter 1: 10549–10561 31. Orlov YL (1977) The Mineralogy of the Diamond. John Wiley, New York, pp 1–235 32. Orlov YL, Bulienkov NA, Martovitsky VP (1982) A study of the internal structure of variety III diamonds by x-ray section topography. Phys Chem Miner 8: 105–111 33. Palyanov YN, Khokhryakov AF, Borzdov YuM, Sokol AS, Gusev VA, Rylov GM, Sobolev NV (1997) Growth conditions and real structure of synthetic diamond crys-tals. Rus Geol Geophys 5: 882–906 34. Pezzagna S, Rogalla D, Wildanger D, Meijer J, Zaitsev A (2011) Creation and nature of optical centres in diamond for single-photon emission-overview and critical remarks. New J Phys 13: 035024 35. Punin YO (1981) Crystal splitting. Zap Vsesojuz mineral Obšč 110(6): 666–686 (In Russian) 36. Ragozin A, Zedgenizov D, Kuper K, Kalinina V, Zemnukhov A (2017) The internal structure of yellow cuboid diamonds from alluvial placers of the northeastern Siberian platform. Crystals 7: 238–250 37. Reutsky VN, Shiryaev AA, Titkov SV, Wiedenbeck M, Zudina NN (2017) Evidence for large scale fractionation of carbon isotopes and of nitrogen impurity during crystallization of gem quality cubic diamonds from placers of North Yakutia. Geochem Inter 55: 988–999 38. Shatsky VS, Zedgenizov DA, Ragozin AL, Kalinina VV (2014) Carbon isotopes and nitrogen contents in placer diamonds from NE Siberian craton: implications for diamond origins. Eur J Mineral 26: 41–52 39. Shatsky VS, Zedgenizov DA, Ragozin AL, Kalinina VV (2015) Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian craton: Evidence from mineral inclusions in alluvial diamonds. Gondwana Res 28: 106–120 40. Smit KV, D’Haenens-Johansson UFS, Howell D, Loudin LC, Wang W (2018) Deformation-related spectroscopic features in natural type Ib-IaA diamonds from Zimmi (West African craton). Mineral Petrol 112 (Suppl 1): S243–S257 41. Sobolev NV, Sobolev VN, Snyder GA, Yefimova ES, Taylor LA (1999) Significance of eclogitic and related parageneses of natural diamonds. Inter Geol Rev 41: 129–140 42. Steeds JW, Charles SJ, Davies J, Griffin I (2000) Photo-luminescence spectroscopy of TEM irradiated diamond. Diamond Related Mater 9: 397–403 43. Sunagawa I (1990) Growth and morphology of diamond crystals under stable and metastable contitions. J Cryst Growth 99: 1156–1161 44. Titkov SV, Shigley JE, Breeding CM, Mineeva RM, Zudin NG, Sergeev AM (2008) Natural color purple diamonds from Siberia. Gems Gemol 44 (1): 56–64 45. Titkov SV, Mineeva RM, Zudina NN, Sergeev AM, Ryabchikov ID, Shiryaev AA, Speransky AV, Zhikha-reva VP (2015a) The luminescent nature of orange coloration in natural diamonds: optical and EPR study. Phys Chem Miner 42: 131–141 46. Titkov SV, Shiryaev AA, Zudina NN, Zudin NG, Solo-dova YP (2015b) Defects in cubic diamonds from the placers in the northeastern Siberian platform: results of IR microspectrometry. Russ Geol Geophys 56: 354–362 47. Tretiakova L (2009) Spectroscopic methods for the identification of natural yellow gem-quality diamonds. Eur J Mineral 21: 43–50 48. Van Wyk J, Ryenhardt EC, High GL, Kiflawi J (1997) The dependences of ESR line widths and spin-spin relax-ation times of single nitrogen defects on the concentration of nitrogen defects in diamond. J Phys D Appl Phys 30: 1790–1793 49. Vasilev EA, Zedgenizov DA, Klepikov IV (2020) The enigma of cuboid diamonds: the causes of inverse distribution of optical centers within the growth zones. J Geosci 65: 59–70 50. Yang Z, Liang R, Zeng X, Peng M (2012) A microscopy and FTIR and PL spectra study of polycrystalline diamonds from Mengyin kimberlite pipes. ISRN Spectros-copy, Art ID 871824 51. Yelisseyev AP, Kanda H (2007) Optical centers related to 3d transition metals in diamond. New Diamond Front Carbon Technol 17: 127–178 52. Yelisseyev A, Nadolinny V, Feygelson B, Terentyev S, Nosukhin S (1996) Spatial distribution of impurity defects in synthetic diamonds obtained by the BARS technology. Diamond Relat Mater 5: 1113–1117 53. Yuryeva OP, Rakhmanova MI, Nadolinny VA, Zedgeni-zov DA, Shatsky VS, Kagi H, Komarovskikh AY (2015) The characteristic photoluminescence and EPR features of superdeep diamonds (São-Luis, Brazil). Phys Chem Miner 42: 707–722 54. Yuryeva OP, Rakhmanova MI, Zedgenizov DA, Kalinina VV (2020) Spectroscopic evidence of the origin of brown and pink diamonds family from Internatsionalnaya kim-berlite pipe (Siberian craton). Phys Chem Miner 47: 20 55. Zaitsev AM (2001) Optical properties of diamond: a data handbook. Springer, Berlin, p 502 56. Zedgenizov DA, Kalinina VV, Reutsky VN, Yuryeva OP, Rakhmanova MI (2016) Regular cuboid diamonds from placers on the northeastern Siberian platform. Lithos 265: 125–137 57. Zedgenizov D, Reutsky VN, Wiedenbeck M (2017) The carbon and nitrogen isotope characteristics of type Ib-IaA cuboid diamonds from alluvial placers in the Northeastern Siberian platform. Minerals 7(10): 178 58. Zudina NN, Titkov SV, Sergeev AM, Zudin NG (2013) The features luminescence centers in cubic diamonds with different color from placers Northeast Siberian Platform. Proc Russian Mineral Soc 4: 57–72