Цитирование: | 1. National Aeronautics and Space Administration. Silicon Carbide (SiC) FiberReinforced SiC Matrix Composites. Lightweight high-performance SiC/SiC ceramic composite materials and SiC fibers for use in extreme environments. n.d. https://ntts-prod.s3.amazonaws.com/t2p/prod/t2media/tops/pdf/LEW-TOPS-25.pdf.
2. Katoh Y, Snead LL. Silicon carbide and its composites for nuclear applications – Historical overview. J Nucl Mater. 2019;526:151849. https://doi.org/10.1016/j.jnucmat.2019.151849.
3. Aichinger T, Rescher G, Pobegen G. Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs. Microelectron Reliab. 2018;80:68–78. https://doi.org/10.1016/j.microrel.2017.11.020.
4. Roger J, Audubert F, Le Petitcorps Y. Thermal reaction of SiC films with tungsten and tungsten–rhenium alloys. J Mater Sci. 2008;43(11):3938–45. https://doi.org/10.1007/s10853-007-2334-y.
5. Roger J, Audubert F, Le Petitcorps Y. Thermal reaction of SiC films with Mo, Re and Mo–Re alloy. J Alloy Compd. 2009;475(1–2):635–42. https://doi.org/10.1016/j.jallcom.2008.07.141.
6. Shi H, Chai Y, Li N, Yan J, Peng H, Zhang R, et al. Investigation of interfacial reaction mechanism between SiC and Inconel 625 superalloy using thermodynamic calculation. J Eur Ceram Soc. 2021;41(7):3960–9. https://doi.org/10.1016/j.jeurceramsoc.2021.02.046.
7. Chou TC, Joshi A. Selectivity of silicon carbide/stainless steel solid-state reactions and discontinuous decomposition of silicon carbide. J Am Ceram Soc. 1991;74(6):1364–72. https://doi.org/10.1111/j.1151-2916.1991.tb04113.x.
8. Demkowicz P, Wright K, Gan J, Petti D. High temperature interface reactions of TiC, TiN, and SiC with palladium and rhodium. Solid State Ionics. 2008;179(39):2313–21. https://doi.org/10.1016/j.ssi.2008.07.021.
9. Roma G. Palladium in cubic silicon carbide: Stability and kinetics. J Appl Phys. 2009;106(12):123504. https://doi.org/10.1063/1.3234392.
10. Olivier EJ, Neethling JH. Palladium transport in SiC. Nucl Eng Des. 2012;244:25–33. https://doi.org/10.1016/j.nucengdes.2011.12.018.
11. López-Honorato E, Fu K, Meadows PJ, Tan J, Xiao P. Effect of microstructure on the resilience of silicon carbide to palladium attack: resilience of SiC to Pd attack. J Am Ceram Soc. 2010;93(12):4135–41. https://doi.org/10.1111/j.1551-2916.2010.04005.x.
12. Gentile M, Xiao P, Abram T. Palladium interaction with silicon carbide. J Nucl Mater. 2015;462:100–7. https://doi.org/10.1016/j.jnucmat.2015.03.013.
13. Chou TC. High temperature reactions between SiC and platinum. J Mater Sci. 1991;26(5):1412–20. https://doi.org/10.1007/BF00544487.
14. Rijnders MR, Kodentsov AA, van Beek JA, van der Akker J, van Loo FJJ. Pattern formation in Pt-SiC diffusion couples. Solid State Ionics. 1997;95(1–2):51–9. https://doi.org/10.1016/S0167-2738(96)00578-4.
15. Cockeram BV. Diffusion bonded silicon carbide having iridium and hermetic silicon carbide-iridium bonds. US 2019/0329519 A1. 2019.
16. Huang Y, Bai S, Zhang H, Ye Y. Oxidation of iridium coating on rhenium coated graphite at elevated temperature in stagnated air. Appl Surf Sci. 2015;328:436–43. https://doi.org/10.1016/j.apsusc.2014.12.063.
17. Grillenberger J, Grossner U, Svensson BG, Albrecht F, Witthuhn W, Sielemann R. Deep acceptor states of platinum and iridium in 4 H -silicon carbide. Phys Rev B. 2004;70(20):205209. https://doi.org/10.1103/PhysRevB.70.205209.
18. Grillenberger J. Deep states of Pt, Ir, and Os in silicon carbide. AIP Conference Proceedings. Vol. 772. Flagstaff, Arizona: AIP. 2005:89–90. 10.1063/1.1994008.
19. Puglisi D, Eriksson J, Bur C, Schuetze A, Lloyd Spetz A, Andersson M. Catalytic metal-gate field effect transistors based on SiC for indoor air quality control. J Sens Sens Syst. 2015;4(1):1–8. https://doi.org/10.5194/jsss-4-1-2015.
20. Andersson M, Bastuck M, Huotari J, Spetz AL, Lappalainen J, Schütze A, et al. SiC-FET sensors for selective and quantitative detection of VOCs down to Ppb level. Procedia Eng. 2016;168:216–20. https://doi.org/10.1016/j.proeng.2016.11.165.
21. Li P, Wang Y, Wang Y, Jin G, Guo X, Tong X. Silicon carbide supported palladium-iridium bimetallic catalysts for efficient selective hydrogenation of cinnamaldehyde. Chin J Chem. 2020;38(4):367–71. https://doi.org/10.1002/cjoc.201900299.
22. Cogan SF, Edell DJ, Guzelian AA, Ping Liu Y, Edell R. Plasma-enhanced chemical vapor deposited silicon carbide as an implantable dielectric coating. J Biomed Mater Res. 2003;67A(3):856–67. https://doi.org/10.1002/jbm.a.10152.
23. Searcy AW, Finnie LN. Stability of solid phases in the ternary systems of silicon and carbon with rhenium and the six platinum metals. J Am Ceram Soc. 1962;45(6):268–73. https://doi.org/10.1111/j.1151-2916.1962.tb11142.x.
24. Yunfeng H, Zhengxian L, Jihong D, Chunliang H. Solid state reaction of Ir with SiC and Ir with Y2O3. Rare Metal Mater Eng. 2012;41(7):1149–52. https://doi.org/10.1016/S1875-5372(12)60059-9.
25. Camarano A, Narciso J, Giuranno D. Solid state reactions between SiC and Ir. J Eur Ceram Soc. 2019;39(14):3959–70. https://doi.org/10.1016/j.jeurceramsoc.2019.06.009.
26. Camarano CA. Síntesis y caracterización de materiales compuestos basados en SiC e Ir. PhD Thesis; Universidad de Alicante; 2018. http://rua.ua.es/dspace/handle/10045/85948.
27. Golosov M, Lozanov V, Baklanova N. The study of the iridium – silicon carbide reaction by Raman and IR spectroscopy. Materials Today: Proc. 2020;25:352–5. https://doi.org/10.1016/j.matpr.2019.12.088.
28. Sha JB, Yamabe-Mitarai Y. Phase and microstructural evolution of Ir–Si binary alloys with fcc/silicide structure. Intermetallics. 2006;14(6):672–84. https://doi.org/10.1016/j.intermet.2005.11.005.
29. Ellner M, Predel B. Durch extrem rasche abkühlung von schmelzen erzielbare phasen in den systemen Ni-Ge, Pd-Ge und Pt-Ge. J Less Common Metals. 1980;76(1–2):181–97. https://doi.org/10.1016/0022-5088(80)90022-3.
30. Bhan S, Schubert K. Zum Aufbau der Systeme Kobalt-Germanium, Rhodium-Silizium sowie einiger verwandter Legierungen. Zeitschrift für Metallkunde. 1960;51(6):327–39.
31. Göransson K, Engström I, Noläng B. Structure refinements for some platinum metal monosilicides. J Alloy Compd. 1995;219(1–2):107–10. https://doi.org/10.1016/0925-8388(94)05046-5.
32. Ichiyanagi K, Takagi S, Kawai N, Fukaya R, Nozawa S, Nakamura KG, et al. Microstructural deformation process of shock-compressed polycrystalline aluminum. Sci Rep. 2019;9(1):7604. https://doi.org/10.1038/s41598-019-43876-2.
33. Ohriner E, Yang Y. Thermodynamic analysis on interactions of silicon dioxide with iridium during module reduction and monitoring treatment. J Phase Equilib Diffus. 2018;39(5):532–7. https://doi.org/10.1007/s11669-018-0637-0.
34. Singh HP. Determination of thermal expansion of germanium, rhodium and iridium by X-rays. Acta Crystallographica Section A. 1968;24(4):469–71. https://doi.org/10.1107/S056773946800094X.
35. Stockmeier M, Sakwe SA, Hens P, Wellmann PJ, Hock R, Magerl A. Thermal expansion coefficients of 6H silicon carbide. MSF. 2008;600–603:517–20. https://doi.org/10.4028/www.scientific.net/MSF.600-603.517.
36. Lozanov VV, Baklanova N, Bulina NV, Titov A. New ablation-resistant material candidate for hypersonic applications: synthesis, composition and oxidation resistance of HfIr3 - based solid solution. ACS Appl Mater Interfaces. 2018;10(15):13062–72. https://doi.org/10.1021/acsami.8b01418.
37. Baklanova NI, Lozanov VV, Titov AT. One-step preparation of TaIr3-based material and its ablation performance under extreme environmental conditions. Corros Sci. 2018;143:337–46. https://doi.org/10.1016/j.corsci.2018.08.044.
38. Strife JR, Smeggil JG, Worrell WL. Reaction of iridium with metal carbides in the temperature range of 1923 to 2400 K. J Am Ceram Soc. 1990;73(4):838–45. https://doi.org/10.1111/j.1151-2916.1990.tb05123.x.
39. Lim C-S, Gyarmati E, Naoumidis A, Nickel H. Untersuchung der Wechselwirkung zwischen Siliciumcarbid und den Metallen Kobalt und Nickel. Jülich, Deutschland: Institut für Reaktorwerkstoffe; 1992. https://juser.fz-juelich.de/record/820528/files/J%C3%BCl_2591_Lim.pdf.
40. Poletaev GM, Starostenkov MD. Contributions of different mechanisms of self-diffusion in face-centered cubic metals under equilibrium conditions. Phys Solid State. 2010;52(6):1146–54. https://doi.org/10.1134/S1063783410060065.
41. Konstantinov AO. On the nature of point defects generated during the diffusion of acceptor impurities in silicon carbide. Phys Technics Semiconductors. 1992;26(2):270–9. http://www.mathnet.ru/links/90e4dac9a7000bb57f465b3c63f80eac/phts4582.pdf.
42. Aleksandrov OV, Kozlovski VV. Simulation of interaction between nickel and silicon carbide during the formation of ohmic contacts. Semiconductors. 2009;43(7):885–91. https://doi.org/10.1134/S1063782609070100.
43. Chen N, Peng Q, Jiao Z, van Rooyen I, Skerjanc WF, Gao F. Analytical bond-order potential for silver, palladium, ruthenium and iodine bulk diffusion in silicon carbide. J Phys: Condens Matter. 2020;32(8):085702. https://doi.org/10.1088/1361-648X/ab5465.
44. Numakura H, Watanabe T, Uchida M, Yamabe-Mitarai Y, Bannai E. Chemical diffusion in the iridium-rich A1 and L12 phases in the Ir-Nb system. JPED. 2006;27(6):638–43. https://doi.org/10.1007/BF02736566.
45. Hong JD, Davis RF, Newbury DE. Self-diffusion of silicon-30 in α-SiC single crystals. J Mater Sci. 1981;16(9):2485–94. https://doi.org/10.1007/BF01113585.
46. Larrieu G, Dubois E, Wallart X, Katcki J. Kinetics, stoichiometry, morphology, and current drive capabilities of Ir-based silicides. J Appl Phys. 2007;102(9):094504. https://doi.org/10.1063/1.2802564.
|