Инд. авторы: Golosov M.A., Lozanov V.V., Titov A.T., Baklanova N.I.
Заглавие: Toward understanding the reaction between silicon carbide and iridium in a broad temperature range
Библ. ссылка: Golosov M.A., Lozanov V.V., Titov A.T., Baklanova N.I. Toward understanding the reaction between silicon carbide and iridium in a broad temperature range // Journal of the American Ceramic Society. - 2021. - Vol.104. - Iss. 12. - P.6653-6669. - ISSN 0002-7820. - EISSN 1551-2916.
Внешние системы: DOI: 10.1111/jace.17978; РИНЦ: 46884784; WoS: 000671401900001;
Реферат: eng: The reaction between iridium and SiC in the 1000 degrees C-1900 degrees C temperature range was studied in details. The rate of this reaction was found to depend not only on temperature, but also on the grain sizes of the initial reagents, oxygen impurities in SiC, as well as the Ir: SiC ratio. The use of fine-grained initial reagents accelerates the reaction, whereas oxygen impurities in SiC powders slow it down. For the Ir: SiC ratio = 1:1, the IrSi silicide phase became dominant at 1400 degrees C and remained the main phase at temperatures up to 1900 degrees C. For the 3:1 ratio, Ir2Si was the main phase at 1900 degrees C. It was suggested that stabilization of this phase is due to the quenching effect. No Si-rich silicide phases were detected in the 1000 degrees C-1900 degrees C temperature range. The coefficients of thermal expansion of silicide phases were determined by high-temperature X-ray diffraction analysis.
Ключевые слова: GERMANIUM; PHASES; RHENIUM; IR; PALLADIUM; SELF-DIFFUSION; THERMAL-REACTION; SOLID-STATE REACTIONS; thermal expansion; silicon carbide; silicide; iridium; SIC FILMS; SYSTEMS;
Издано: 2021
Физ. характеристика: с.6653-6669
Цитирование: 1. National Aeronautics and Space Administration. Silicon Carbide (SiC) FiberReinforced SiC Matrix Composites. Lightweight high-performance SiC/SiC ceramic composite materials and SiC fibers for use in extreme environments. n.d. https://ntts-prod.s3.amazonaws.com/t2p/prod/t2media/tops/pdf/LEW-TOPS-25.pdf. 2. Katoh Y, Snead LL. Silicon carbide and its composites for nuclear applications – Historical overview. J Nucl Mater. 2019;526:151849. https://doi.org/10.1016/j.jnucmat.2019.151849. 3. Aichinger T, Rescher G, Pobegen G. Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs. Microelectron Reliab. 2018;80:68–78. https://doi.org/10.1016/j.microrel.2017.11.020. 4. Roger J, Audubert F, Le Petitcorps Y. Thermal reaction of SiC films with tungsten and tungsten–rhenium alloys. J Mater Sci. 2008;43(11):3938–45. https://doi.org/10.1007/s10853-007-2334-y. 5. Roger J, Audubert F, Le Petitcorps Y. Thermal reaction of SiC films with Mo, Re and Mo–Re alloy. J Alloy Compd. 2009;475(1–2):635–42. https://doi.org/10.1016/j.jallcom.2008.07.141. 6. Shi H, Chai Y, Li N, Yan J, Peng H, Zhang R, et al. Investigation of interfacial reaction mechanism between SiC and Inconel 625 superalloy using thermodynamic calculation. J Eur Ceram Soc. 2021;41(7):3960–9. https://doi.org/10.1016/j.jeurceramsoc.2021.02.046. 7. Chou TC, Joshi A. Selectivity of silicon carbide/stainless steel solid-state reactions and discontinuous decomposition of silicon carbide. J Am Ceram Soc. 1991;74(6):1364–72. https://doi.org/10.1111/j.1151-2916.1991.tb04113.x. 8. Demkowicz P, Wright K, Gan J, Petti D. High temperature interface reactions of TiC, TiN, and SiC with palladium and rhodium. Solid State Ionics. 2008;179(39):2313–21. https://doi.org/10.1016/j.ssi.2008.07.021. 9. Roma G. Palladium in cubic silicon carbide: Stability and kinetics. J Appl Phys. 2009;106(12):123504. https://doi.org/10.1063/1.3234392. 10. Olivier EJ, Neethling JH. Palladium transport in SiC. Nucl Eng Des. 2012;244:25–33. https://doi.org/10.1016/j.nucengdes.2011.12.018. 11. López-Honorato E, Fu K, Meadows PJ, Tan J, Xiao P. Effect of microstructure on the resilience of silicon carbide to palladium attack: resilience of SiC to Pd attack. J Am Ceram Soc. 2010;93(12):4135–41. https://doi.org/10.1111/j.1551-2916.2010.04005.x. 12. Gentile M, Xiao P, Abram T. Palladium interaction with silicon carbide. J Nucl Mater. 2015;462:100–7. https://doi.org/10.1016/j.jnucmat.2015.03.013. 13. Chou TC. High temperature reactions between SiC and platinum. J Mater Sci. 1991;26(5):1412–20. https://doi.org/10.1007/BF00544487. 14. Rijnders MR, Kodentsov AA, van Beek JA, van der Akker J, van Loo FJJ. Pattern formation in Pt-SiC diffusion couples. Solid State Ionics. 1997;95(1–2):51–9. https://doi.org/10.1016/S0167-2738(96)00578-4. 15. Cockeram BV. Diffusion bonded silicon carbide having iridium and hermetic silicon carbide-iridium bonds. US 2019/0329519 A1. 2019. 16. Huang Y, Bai S, Zhang H, Ye Y. Oxidation of iridium coating on rhenium coated graphite at elevated temperature in stagnated air. Appl Surf Sci. 2015;328:436–43. https://doi.org/10.1016/j.apsusc.2014.12.063. 17. Grillenberger J, Grossner U, Svensson BG, Albrecht F, Witthuhn W, Sielemann R. Deep acceptor states of platinum and iridium in 4 H -silicon carbide. Phys Rev B. 2004;70(20):205209. https://doi.org/10.1103/PhysRevB.70.205209. 18. Grillenberger J. Deep states of Pt, Ir, and Os in silicon carbide. AIP Conference Proceedings. Vol. 772. Flagstaff, Arizona: AIP. 2005:89–90. 10.1063/1.1994008. 19. Puglisi D, Eriksson J, Bur C, Schuetze A, Lloyd Spetz A, Andersson M. Catalytic metal-gate field effect transistors based on SiC for indoor air quality control. J Sens Sens Syst. 2015;4(1):1–8. https://doi.org/10.5194/jsss-4-1-2015. 20. Andersson M, Bastuck M, Huotari J, Spetz AL, Lappalainen J, Schütze A, et al. SiC-FET sensors for selective and quantitative detection of VOCs down to Ppb level. Procedia Eng. 2016;168:216–20. https://doi.org/10.1016/j.proeng.2016.11.165. 21. Li P, Wang Y, Wang Y, Jin G, Guo X, Tong X. Silicon carbide supported palladium-iridium bimetallic catalysts for efficient selective hydrogenation of cinnamaldehyde. Chin J Chem. 2020;38(4):367–71. https://doi.org/10.1002/cjoc.201900299. 22. Cogan SF, Edell DJ, Guzelian AA, Ping Liu Y, Edell R. Plasma-enhanced chemical vapor deposited silicon carbide as an implantable dielectric coating. J Biomed Mater Res. 2003;67A(3):856–67. https://doi.org/10.1002/jbm.a.10152. 23. Searcy AW, Finnie LN. Stability of solid phases in the ternary systems of silicon and carbon with rhenium and the six platinum metals. J Am Ceram Soc. 1962;45(6):268–73. https://doi.org/10.1111/j.1151-2916.1962.tb11142.x. 24. Yunfeng H, Zhengxian L, Jihong D, Chunliang H. Solid state reaction of Ir with SiC and Ir with Y2O3. Rare Metal Mater Eng. 2012;41(7):1149–52. https://doi.org/10.1016/S1875-5372(12)60059-9. 25. Camarano A, Narciso J, Giuranno D. Solid state reactions between SiC and Ir. J Eur Ceram Soc. 2019;39(14):3959–70. https://doi.org/10.1016/j.jeurceramsoc.2019.06.009. 26. Camarano CA. Síntesis y caracterización de materiales compuestos basados en SiC e Ir. PhD Thesis; Universidad de Alicante; 2018. http://rua.ua.es/dspace/handle/10045/85948. 27. Golosov M, Lozanov V, Baklanova N. The study of the iridium – silicon carbide reaction by Raman and IR spectroscopy. Materials Today: Proc. 2020;25:352–5. https://doi.org/10.1016/j.matpr.2019.12.088. 28. Sha JB, Yamabe-Mitarai Y. Phase and microstructural evolution of Ir–Si binary alloys with fcc/silicide structure. Intermetallics. 2006;14(6):672–84. https://doi.org/10.1016/j.intermet.2005.11.005. 29. Ellner M, Predel B. Durch extrem rasche abkühlung von schmelzen erzielbare phasen in den systemen Ni-Ge, Pd-Ge und Pt-Ge. J Less Common Metals. 1980;76(1–2):181–97. https://doi.org/10.1016/0022-5088(80)90022-3. 30. Bhan S, Schubert K. Zum Aufbau der Systeme Kobalt-Germanium, Rhodium-Silizium sowie einiger verwandter Legierungen. Zeitschrift für Metallkunde. 1960;51(6):327–39. 31. Göransson K, Engström I, Noläng B. Structure refinements for some platinum metal monosilicides. J Alloy Compd. 1995;219(1–2):107–10. https://doi.org/10.1016/0925-8388(94)05046-5. 32. Ichiyanagi K, Takagi S, Kawai N, Fukaya R, Nozawa S, Nakamura KG, et al. Microstructural deformation process of shock-compressed polycrystalline aluminum. Sci Rep. 2019;9(1):7604. https://doi.org/10.1038/s41598-019-43876-2. 33. Ohriner E, Yang Y. Thermodynamic analysis on interactions of silicon dioxide with iridium during module reduction and monitoring treatment. J Phase Equilib Diffus. 2018;39(5):532–7. https://doi.org/10.1007/s11669-018-0637-0. 34. Singh HP. Determination of thermal expansion of germanium, rhodium and iridium by X-rays. Acta Crystallographica Section A. 1968;24(4):469–71. https://doi.org/10.1107/S056773946800094X. 35. Stockmeier M, Sakwe SA, Hens P, Wellmann PJ, Hock R, Magerl A. Thermal expansion coefficients of 6H silicon carbide. MSF. 2008;600–603:517–20. https://doi.org/10.4028/www.scientific.net/MSF.600-603.517. 36. Lozanov VV, Baklanova N, Bulina NV, Titov A. New ablation-resistant material candidate for hypersonic applications: synthesis, composition and oxidation resistance of HfIr3 - based solid solution. ACS Appl Mater Interfaces. 2018;10(15):13062–72. https://doi.org/10.1021/acsami.8b01418. 37. Baklanova NI, Lozanov VV, Titov AT. One-step preparation of TaIr3-based material and its ablation performance under extreme environmental conditions. Corros Sci. 2018;143:337–46. https://doi.org/10.1016/j.corsci.2018.08.044. 38. Strife JR, Smeggil JG, Worrell WL. Reaction of iridium with metal carbides in the temperature range of 1923 to 2400 K. J Am Ceram Soc. 1990;73(4):838–45. https://doi.org/10.1111/j.1151-2916.1990.tb05123.x. 39. Lim C-S, Gyarmati E, Naoumidis A, Nickel H. Untersuchung der Wechselwirkung zwischen Siliciumcarbid und den Metallen Kobalt und Nickel. Jülich, Deutschland: Institut für Reaktorwerkstoffe; 1992. https://juser.fz-juelich.de/record/820528/files/J%C3%BCl_2591_Lim.pdf. 40. Poletaev GM, Starostenkov MD. Contributions of different mechanisms of self-diffusion in face-centered cubic metals under equilibrium conditions. Phys Solid State. 2010;52(6):1146–54. https://doi.org/10.1134/S1063783410060065. 41. Konstantinov AO. On the nature of point defects generated during the diffusion of acceptor impurities in silicon carbide. Phys Technics Semiconductors. 1992;26(2):270–9. http://www.mathnet.ru/links/90e4dac9a7000bb57f465b3c63f80eac/phts4582.pdf. 42. Aleksandrov OV, Kozlovski VV. Simulation of interaction between nickel and silicon carbide during the formation of ohmic contacts. Semiconductors. 2009;43(7):885–91. https://doi.org/10.1134/S1063782609070100. 43. Chen N, Peng Q, Jiao Z, van Rooyen I, Skerjanc WF, Gao F. Analytical bond-order potential for silver, palladium, ruthenium and iodine bulk diffusion in silicon carbide. J Phys: Condens Matter. 2020;32(8):085702. https://doi.org/10.1088/1361-648X/ab5465. 44. Numakura H, Watanabe T, Uchida M, Yamabe-Mitarai Y, Bannai E. Chemical diffusion in the iridium-rich A1 and L12 phases in the Ir-Nb system. JPED. 2006;27(6):638–43. https://doi.org/10.1007/BF02736566. 45. Hong JD, Davis RF, Newbury DE. Self-diffusion of silicon-30 in α-SiC single crystals. J Mater Sci. 1981;16(9):2485–94. https://doi.org/10.1007/BF01113585. 46. Larrieu G, Dubois E, Wallart X, Katcki J. Kinetics, stoichiometry, morphology, and current drive capabilities of Ir-based silicides. J Appl Phys. 2007;102(9):094504. https://doi.org/10.1063/1.2802564.