Цитирование: | 1. [1] A. H. Peslier, A. B. Woodland, D. R. Bell, M. Lazarov, and T. J. Lapen, “Metasomatic control of water contents in the Kaapvaal cratonic mantle,” Geochimica et Cosmochimica Acta, vol. 97, pp. 213–246, 2012.
2. [2] H. N. Pollack, “Cratonization and thermal evolution of the mantle,” Earth and Planetary Science Letters, vol. 80, no. 1-2, pp. 175–182, 1986.
3. [3] L. S. Doucet, A. H. Peslier, D. A. Ionov et al., “High water contents in the Siberian cratonic mantle linked to metasomatism: an FTIR study of Udachnaya peridotite xenoliths,” Geochimica et Cosmochimica Acta, vol. 137, pp. 159–187, 2014.
4. [4] E. W. Marshall, J. C. Lassiter, and J. D. Barnes, “On the (mis) behavior of water in the mantle: controls on nominally anhydrous mineral water content in mantle peridotites,” Earth and Planetary Science Letters, vol. 499, pp. 219–229, 2018.
5. [5] A. M. Agashev, L. N. Pokhilenko, N. P. Pokhilenko, and E. V. Shchukina, “Geochemistry of eclogite xenoliths from the Udachnaya kimberlite pipe: section of ancient oceanic crust sampled,” Lithos, vol. 314-315, pp. 187–200, 2018.
6. [6] D. E. Jacob, “Nature and origin of eclogite xenoliths from kimberlites,” Lithos, vol. 77, no. 1-4, pp. 295–316, 2004.
7. [7] J. F. Pernet-Fisher, G. H. Howarth, Y. Liu et al., “Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths,” Contributions to Mineralogy and Petrology, vol. 167, no. 3, p. 981, 2014.
8. [8] M. J. O'Hara and H. S. Yoder, “Formation and fractionation of basic magmas at high pressures,” Scottish Journal of Geology, vol. 3, no. 1, pp. 67–117, 1967.
9. [9] J. R. Smyth, F. A. Caporuscio, and T. McCormick, “Mantle eclogites: evidence of igneous fractionation in the mantle,” Earth and Planetary Science Letters, vol. 93, no. 1, pp. 133– 141, 1989.
10. [10] S. Aulbach, T. Stachel, K. S. Viljoen, G. P. Brey, and J. W. Harris, “Eclogitic and websteritic diamond sources beneath the Limpopo Belt—is slab-melting the link?,” Contributions to Mineralogy and Petrology, vol. 143, no. 1, pp. 56–70, 2002.
11. [11] K. A. Smart, L. M. Heaman, T. Chacko et al., “The origin of high-MgO diamond eclogites from the Jericho Kimberlite, Canada,” Earth and Planetary Science Letters, vol. 284, no. 3-4, pp. 527–537, 2009.
12. [12] M. Y. Shur and A. L. Perchuk, “Omphacite paradox in mantle peridotites,” Russian Geology and Geophysics, vol. 56, no. 11, pp. 1568–1577, 2015.
13. [13] L. A. Taylor, G. A. Snyder, R. Keller et al., “Petrogenesis of group A eclogites and websterites; evidence from the Obnazhennaya kimberlite, Yakutia,” Contributions to Mineralogy and Petrology, vol. 145, no. 4, pp. 424–443, 2003.
14. [14] D. R. Bell and G. R. Rossman, “The distribution of hydroxyl in garnets from the subcontinental mantle of southern Africa,” Contributions to Mineralogy and Petrology, vol. 111, no. 2, pp. 161–178, 1992.
15. [15] J.-X. Huang, P. Li, W. L. Griffin et al., “Water contents of Roberts Victor xenolithic eclogites: primary and metasomatic controls,” Contributions to Mineralogy and Petrology, vol. 168, no. 6, p. 1092, 2014.
16. [16] M. Koch-Muller, S. S. Matsyuk, and R. Wirth, “Hydroxyl in omphacites and omphacitic clinopyroxenes of upper mantle to lower crustal origin beneath the Siberian platform,” American Mineralogist, vol. 89, no. 7, pp. 921–931, 2004.
17. [17] M. V. Kolesnichenko, D. A. Zedgenizov, A. L. Ragozin, K. D. Litasov, and V. S. Shatsky, “The role of eclogites in the redistribution of water in the subcontinental mantle of the Siberian craton: results of determination of the water content in minerals from the Udachnaya pipe eclogites,” Russian Geology and Geophysics, vol. 59, no. 7, pp. 763–779, 2018.
18. [18] B. N. Moine, N. Bolfan-Casanova, I. B. Radu et al., “Molecular hydrogen in minerals as a clue to interpret ∂D variations in the mantle,” Nature Communications, vol. 11, no. 1, p. 3604, 2020.
19. [19] A. L. Ragozin, A. A. Karimova, K. D. Litasov, D. A. Zedgenizov, and V. S. Shatsky, “Water content in minerals of mantle xenoliths from the Udachnaya pipe kimberlites (Yakutia),” Russian Geology and Geophysics, vol. 55, no. 4, pp. 428–442, 2014.
20. [20] J. R. Smyth, D. R. Bell, and G. R. Rossman, “Incorporation of hydroxyl in upper-mantle clinopyroxenes,” Nature, vol. 351, no. 6329, pp. 732–735, 1991.
21. [21] E. V. Shchukina and V. S. Shchukin, “Diamond exploration potential of the northern east European platform,” Minerals, vol. 8, no. 5, p. 189, 2018.
22. [22] E. V. Shchukina, A. M. Agashev, and N. P. Pokhilenko, “Metasomatic origin of garnet xenocrysts from the V. Grib kimberlite pipe, Arkhangelsk region, NW Russia,” Geoscience Frontiers, vol. 8, no. 4, pp. 641–651, 2017.
23. [23] E. V. Shchukina, A. M. Agashev, S. I. Kostrovitsky, and N. P. Pokhilenko, “Metasomatic processes in the lithospheric mantle beneath the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province, Russia),” Russian Geology and Geophysics, vol. 56, no. 12, pp. 1701–1716, 2015.
24. [24] E. V. Shchukina, A. M. Agashev, and D. A. Zedgenizov, “Origin of zircon-bearing mantle eclogites entrained in the V. Grib kimberlite (Arkhangelsk region, NW Russia): evidence from mineral geochemistry and the U-Pb and Lu-Hf isotope compositions of zircon,” Mineralogy and Petrology, vol. 112, no. S1, pp. 85–100, 2018.
25. [25] E. V. Shchukina, A. M. Agashev, N. G. Soloshenko, M. V. Streletskaya, and D. A. Zedgenizov, “Origin of V. Grib pipe eclogites (Arkhangelsk region, NW Russia): geochemistry, Sm-Nd and Rb-Sr isotopes and relation to regional Precambrian tectonics,” Mineralogy and Petrology, vol. 113, no. 5, pp. 593–612, 2019.
26. [26] E. Libowitzky and G. R. Rossman, “Principles of quantitative absorbance measurements in anisotropic crystals,” Physics and Chemistry of Minerals, vol. 23, no. 6, pp. 319–327, 1996.
27. [27] E. Libowitzky and G. R. Rossman, “An IR absorption calibration for water in minerals,” American Mineralogist, vol. 82, no. 11-12, pp. 1111–1115, 1997.
28. [28] I. Katayama, S. Nakashima, and H. Yurimoto, “Water content in natural eclogite and implication for water transport into the deep upper mantle,” Lithos, vol. 86, no. 3-4, pp. 245–259, 2006.
29. [29] D. R. Bell, P. D. Ihinger, and G. R. Rossman, “Quantitative analysis of trace OH in garnet and pyroxenes,” American Mineralogist, vol. 80, no. 5-6, pp. 465–474, 1995.
30. [30] V. N. Korolyuk, Y. G. Lavrent’ev, L. V. Usova, and E. N. Nigmatulina, “JXA-8100 microanalyzer: accuracy of analysis of rock-formingminerals,” Russian Geology and Geophysics (Geologiya i Geofizika), vol. 49, no. 3, pp. 165–168, 2008, (221-225).
31. [31] V. N. Korolyuk, L. V. Usova, and E. N. Nigmatulina, “Accuracy in the determination of the compositions of main rockforming silicates and oxides on a JXA-8100 microanalyzer,” Journal of Analytical Chemistry, vol. 64, no. 10, pp. 1042– 1046, 2009.
32. [32] Y. G. Lavrent’ev, V. N. Korolyuk, L. V. Usova, and E. N. Nigmatulina, “Electron probe microanalysis of rockforming minerals with a JXA-8100 electron probe microanalyzer,” Russian Geology and Geophysics, vol. 56, no. 10, pp. 1428–1436, 2015.
33. [33] E. Libowitsky and A. Beran, “The structure of hydrous species in nominally anhydrous minerals: information from polarized IR spectroscopy,” Reviews in Mineralogy & Geochemistry, vol. 62, no. 1, pp. 29–52, 2006.
34. [34] S. S. Matsyuk, K. Langer, and A. Hosch, “Hydroxyl defects in garnets from mantle xenoliths in kimberlites of the Siberian platform,” Contributions to Mineralogy and Petrology, vol. 132, no. 2, pp. 163–179, 1998.
35. [35] Y.-M. Sheng, Q.-K. Xia, L. Dallai, X.-Z. Yang, and Y.-T. Hao, “H2O contents and D/H ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie orogen, eastern China,” Geochimica et Cosmochimica Acta, vol. 71, no. 8, pp. 2079–2103, 2007.
36. [36] J. R. Clark and J. J. Papike, “Crystal-chemical characterization of omphacites,” American Mineralogist, vol. 53, pp. 840–868, 1968.
37. [37] N. Morimoto, “Nomenclature of pyroxenes,” Mineralogy and Petrology, vol. 39, no. 1, pp. 55–76, 1988.
38. [38] H. Skogby, “Water in natural mantle minerals I: pyroxenes,” Reviews in Mineralogy & Geochemistry, vol. 62, no. 1, pp. 155–167, 2006.
39. [39] H. Skogby, D. R. Bell, and G. R. Rossman, “Hydroxide in pyroxene: variations in the natural environment,” American Mineralogist, vol. 75, pp. 764–774, 1990.
40. [40] I. Katayama and S. Nakashima, “Hydroxyl in clinopyroxene from the deep subducted crust: evidence for H2O transport into the mantle,” American Mineralogist, vol. 88, no. 1, pp. 229–234, 2003.
41. [41] G. D. Bromiley and H. Keppler, “An experimental investigation of hydroxyl solubility in jadeite and Na-rich clinopyroxenes,” Contributions to Mineralogy and Petrology, vol. 147, no. 2, pp. 189–200, 2004.
42. [42] A. Proyer, E. Dachs, and C. McCammon, “Pitfalls in geothermobarometry of eclogites: Fe3+and changes in the mineral chemistry of omphacite at ultrahigh pressures,” Contributions to Mineralogy and Petrology, vol. 147, no. 3, pp. 305–318, 2004.
43. [43] E. Schmädicke and J. Gose, “Water transport by subduction: clues from garnet of Erzgebirge UHP eclogite,” American Mineralogist, vol. 102, no. 5, pp. 975–986, 2017.
44. [44] Q.-K. Xia, Y.-M. Sheng, X.-Z. Yang, and H.-M. Yu, “Heterogeneity of water in garnets from UHP eclogites, eastern Dabieshan, China,” Chemical Geology, vol. 224, no. 4, pp. 237–246, 2005.
45. [45] R. Lu and H. Keppler, “Water solubility in pyrope to 100 kbar,” Contributions to Mineralogy and Petrology, vol. 129, no. 1, pp. 35–42, 1997.
46. [46] M. Andrut, M. Wildner, and A. Beran, “The crystal chemistry of birefrigent natural uvarovites. Part IV. OH defect incorporation mechanisms in non-cubic garnets derived from polarized IR spectroscopy,” European Journal of Mineralogy, vol. 14, pp. 1019–1026, 2002.
47. [47] A. Beran and E. Libowitsky, “Water in natural mantle minerals II: olivine, garnet and accessory minerals,” Reviews in Mineralogy & Geochemistry, vol. 62, no. 1, pp. 169–191, 2006.
48. [48] S. M. Peacock and K. Wang, “Seismic consequences of warm versus cool subduction metamorphism: examples from southwest and northeast Japan,” Science, vol. 286, no. 5441, pp. 937– 939, 1999.
49. [49] P. E. van Keken, B. R. Hacker, E. M. Syracuse, and G. A. Abers, “Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide,” Journal of Geophysical Research, vol. 116, p. B01401, 2011.
50. [50] Y.-F. Zheng, R.-X. Chen, Z. Xu, and S.-B. Zhang, “The transport of water in subduction zones,” Science China Earth Science, vol. 59, no. 4, pp. 651–682, 2016.
51. [51] S. Poli, “The amphibolite-eclogite transformation – an experimental study on basalt,” American Journal of Science, vol. 293, no. 10, pp. 1061–1107, 1993.
52. [52] C. Aubaud, E. Hauri, and M. M. Hirchmann, “Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts,” Geophysical Research Letters, vol. 31, no. 20, article L20611, 2004.
53. [53] A. N. Dongre, D. E. Jacob, and R. A. Stern, “Subductionrelated origin of eclogite xenoliths from the Wajrakarur kimberlite field, Eastern Dharwar craton, Southern India: constraints from petrology and geochemistry,” Geochimica et Cosmochimica Acta, vol. 166, pp. 165–188, 2015.
54. [54] Q. Shu, G. P. Brey, and D. G. Pearson, “Eclogites and garnet pyroxenites from Kimberley, Kaapvaal craton, South Africa: their diverse origins and complex metasomatic signatures,” Mineralogy and Petrology, vol. 112, no. S1, pp. 43–56, 2018.
55. [55] R. P. Rapp and E. B. Watson, “Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling,” Journal of Petrology, vol. 36, no. 4, pp. 891–931, 1995.
56. [56] S. Tappe, K. A. Smart, D. G. Pearson, A. Steenfelt, and A. Simonetti, “Craton formation in Late Archean subduction zones revealed by first Greenland eclogites,” Geology, vol. 39, no. 12, pp. 1103–1106, 2011.
57. [57] D. E. Jacob, K. S. Viljoen, and N. V. Grassineau, “Eclogite xenolith from Kimberley, South Africa – a case study of mantle metasomatism in eclogites,” Lithos, vol. 112S, pp. 1002–1013, 2009.
58. [58] K. C. Misra, M. Anand, L. A. Taylor, and N. V. Sobolev, “Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia,” Contributions to Mineralogy and Petrology, vol. 146, no. 6, pp. 696–714, 2004.
59. [59] A. V. Kargin, L. V. Sazonova, A. A. Nosova et al., “Sheared peridotite xenolith from the V. Grib kimberlite pipe, Arkhangelsk Diamond Province, Russia: texture, composition, and origin,” Geoscience Frontiers, vol. 8, no. 4, pp. 653–669, 2017.
60. [60] A. V. Kargin, L. V. Sazonova, A. A. Nosova, and V. V. Tretyachenko, “Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: evidence for mantle metasomatism associated with kimberlite melts,” Lithos, vol. 262, pp. 442–455, 2016.
61. [61] J. A. O’Leary, G. A. Gaetani, and E. H. Hauri, “The effect of tetrahedral Al3+on the partitioning of water between clinopyroxene and silicate melt,” Earth and Planetary Science Letters, vol. 297, no. 1-2, pp. 111–120, 2010.
62. [62] T. J. Tenner, M. M. Hirschmann, A. C. Withers, and R. L. Hervig, “Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting,” Chemical Geology, vol. 262, no. 1-2, pp. 42–56, 2009.
63. [63] A. G. Sokol, I. N. Kupriyanov, Y. N. Palyanov, A. N. Kruk, and N. V. Sobolev, “Melting experiments on the Udachnaya kimberlite at 6.3-7.5 GPa: implications for the role of H2O in magma generation and formation of hydrous olivine,” Geochimica et Cosmochimica Acta, vol. 101, pp. 133–155, 2013.
64. [64] A. G. Sokol, I. N. Kupriyanov, and Y. N. Palyanov, “Partitioning of H2O between olivine and carbonate-silicate melts at 6.3 GPa and 1400 °C: implications for kimberlite formation,” Earth and Planetary Science Letters, vol. 383, pp. 58–67, 2013.
65. [65] L. V. Danyushevsky, S. M. Eggins, T. J. Falloon, and D. M. Christie, “H2O abundance in depleted to moderately enriched mid-ocean ridge magmas; part I: incompatible behaviour, implications for mantle storage, and origin of regional variations,” Journal of Petrology, vol. 41, no. 8, pp. 1329–1364, 2000.
66. [66] D. R. Bell, G. R. Rossman, and R. O. Moore, “Abundance and partitioning of OH in a high-pressure magmatic system: megacrysts from the Monastery kimberlite, South Africa,” Journal of Petrology, vol. 45, no. 8, pp. 1539–1564, 2004.
67. [67] D. A. Carswell, “Primary and secondary phlogopites and clinopyroxenes in garnet lherzolite xenoliths,” in International Conference on Kimberlites (Extended Abstracts), L. H. Ahrean, A. R. Duncan, and A. J. Erlank, Eds., pp. 417–429, Pergamon Press, Oxford, 1973.
68. [68] G. A. Snyder, L. A. Taylor, E. A. Jerde et al., “Archean mantle heterogeneity and the origin of diamondiferous eclogites, Siberia: evidence from stable isotopes and hydroxyl in garnet,” American Mineralogist, vol. 80, no. 7-8, pp. 799–809, 1995.
69. [69] W. F. McDonough and S. S. Sun, “The composition of the Earth,” Chemical Geology, vol. 120, no. 3-4, pp. 223–253, 1995.
70. [70] R. Arevalo and W. F. McDonough, “Chemical variations and regional diversity observed in MORB,” Chemical Geology, vol. 271, no. 1-2, pp. 70–85, 2010.
71. [71] K. M. Gillis, J. E. Snow, A. Klaus et al., “Primitive layered gabbros from fast-spreading lower oceanic crust,” Nature, vol. 505, no. 7482, pp. 204–207, 2014.
72. [72] M. Godard, S. Awaji, H. Hansen et al., “Geochemistry of a long in-situ section of intrusive slow-spread oceanic lithosphere: results from IODP site U1309 (Atlantis massif, 30°N mid-Atlantic-ridge),” Earth and Planetary Science Letters, vol. 279, no. 1-2, pp. 110–122, 2009.
73. [73] A. W. Hoffman, “Chemical differentiation of the earth: the relationship between mantle, continental crust and oceanic crust,” Earth and Planetary Science Letters, vol. 90, no. 3, pp. 297–314, 1988.
74. [74] D. J. Ellis and D. H. Green, “An experimental study of the effect of Ca upon garnet-clinopyroxene Fe–Mg exchange equilibria,” Contributions to Mineralogy and Petrology, vol. 71, no. 1, pp. 13–22, 1979.
75. [75] E. S. Grew, A. J. Locock, S. J. Mills, I. O. Galuskina, E. V. Galuskin, and U. Halenius, “Nomenclature of the garnet supergroup,” American Mineralogist, vol. 98, no. 4, pp. 785– 811, 2013. 18 Lithosphere Downloaded
|