Инд. авторы: Sklyarov E.V., Lavrenchuk A.V., Doroshkevich A.G., Starikova A.E., Kanakin S.V.
Заглавие: Pyroxenite as a Product of Mafic-Carbonate Melt Interaction (Tazheran Massif, West Baikal Area, Russia)
Библ. ссылка: Sklyarov E.V., Lavrenchuk A.V., Doroshkevich A.G., Starikova A.E., Kanakin S.V. Pyroxenite as a Product of Mafic-Carbonate Melt Interaction (Tazheran Massif, West Baikal Area, Russia) // MINERALS. - 2021. - Vol.11. - Iss. 6. - Art.654.
Внешние системы: DOI: 10.3390/min11060654; РИНЦ: 46824912; WoS: 000666260000001;
Реферат: eng: Pyroxenite and nepheline-pyroxene rocks coexist with dolomite-bearing calcite marbles in Tazheran Massif in the area of Lake Baikal, Siberia, Russia. Pyroxenites occur in a continuous elongate zone between marbles and beerbachites (metamorphosed gabbro dolerites) and in 5 cm to 20 m fragments among the marbles. Pyroxene in pyroxenite is rich in calcium and alumina (5-12 wt% Al2O3) and has a fassaite composition. The Tazheran pyroxenite may originate from a mafic subvolcanic source indicated by the presence of remnant dolerite found in one pyroxenite body. This origin can be explained in terms of interaction between mafic and crust-derived carbonatitic melts, judging by the mineralogy of pyroxenite bodies and their geological relations with marbles. According to this model, the intrusion of mantle mafic melts into thick lower crust saturated with fluids caused partial melting of silicate-carbonate material and produced carbonate and carbonate-silicate melts. The fassaite-bearing pyroxenite crystallized from a silicate-carbonate melt mixture which was produced by roughly synchronous injections of mafic, pyroxenitic, and carbonate melt batches. The ascending hydrous carbonate melts entrained fragments of pyroxenite that crystallized previously at a temperature exceeding the crystallization point of carbonates. Subsequently, while the whole magmatic system was cooling down, pyroxenite became metasomatized by circulating fluids, which led to the formation of assemblages with garnet, melilite, and scapolite.
Ключевые слова: NOMENCLATURE; MAGMA; SYSTEM; SKARN; ISOTOPE; ASSIMILATION; ROCKS; MARBLE DYKES; Tazheran Massif; Early Paleozoic orogeny; metasomatism; fluids; silicate-carbonate melt interaction; carbonate melt; mafic melt; gabbro dolerite; marble; pyroxenite; OLKHON REGION; PEROVSKITES;
Издано: 2021
Физ. характеристика: 654
Цитирование: 1. Yardley, B.W.; Kerrick, D.M. Contact Metamorphism. Washington DC (Mineralogical Society of America: Reviews in Mineral-ogy, Vol. 26), 1992, xvi+ 847 pp. Price $26.00. Mineral. Mag. 1993, 57, 359–360. 2. Meinert, L.D. Skarns and skarn deposits. Geosci. Can. 1992, 19, 145–162, doi:10.12789/gs.v19i4.3773. 3. Meinert, L.D. Igneous petrogenesis and skarn deposits. Geol. Assoc. Can. Spec. 2016, 40, 569–583. 4. Freda, C.; Gaeta, M.; Misiti, V.; Mollo, S.; Dolfi, D.; Scarlato, P. Magma-carbonate interaction: An experimental study on ultra-potassic rocks from Alban Hills (Central Italy). Lithos 2008, 101, 397–415. J. Petrol. 2010, 51, 1027–1051, doi:10.1093/petrol-ogy/egq010. 5. Iacono-Marziano, G.; Gaillard, F.; Pichavant, M. Limestone assimilation by basaltic magmas: An experimental re-assessment and application to Italian volcanoes. Contrib. Mineral. Petrol. 2008, 155, 719–738. 6. Gaeta, M.; Di Rocco, T.; Freda, C. Carbonate assimilation in open magmatic systems: The role of melt-bearing skarns and cu-mulate-forming processes. J. Petrol. 2009, 50, 361–385, doi:10.1007/s00410-007-0267-8. 7. Di Rocco, T.; Freda, C.; Gaeta, M.; Mollo, S.; Dallai, L. Magma chambers emplaced in carbonate substrate: Petrogenesis of skarn and cumulate rocks and implications for CO2 degassing in volcanic areas. J. Petrol. 2012, 53, 2307–2332, doi:10.1093/petrol-ogy/egs051. 8. Ganino, C.; Arndt, T.; Chauvel, C.; Jean, A.; Athurion, C. Melting of carbonate wall rocks and formation of the heterogeneous aureole of the Panzhihua intrusion, China. Geosci. Front. 2013, 4, 535–546, doi:10.1016/j.gsf.2013.01.012. 9. Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zussman, J.; Aoki, K.; Gottardi, G. Nomenclature of pyroxenes. Am. Mineral. 1988, 73, 1123–1133. 10. Deer, W.A.; Howie, R.A.; Zussman, J. Rock-Forming Minerals. Volume 2A. Single-Chain Silicates; The Geological Society: London, UK; Alden Press: Oxford, UK, 1997; pp. 668. 11. Gilg, H.A.; Lima, A.; Somma, R.; Belkin, H.E.; De Vivo, B.; Ayuso, R.A. Isotope geochemistry and fluid inclusion study of skarns from Vesuvius. Miner. Petrol. 2001, 73, 145–176. 12. Wenzel, T.; Baumgartner, L.P.; Brugmann, G.E.; Konnikov, E.G.; Kislov, E.V.; Orsoev, D.A. Contamination of mafic magma by partial melting of dolomitic xenoliths. Terra Nova 2001, 13, 197–202, doi:10.1046/j.1365-3121.2001.00340.x. 13. Konev, A.A.; Samoilov, V.S. Contact Metamorphism and Metasomatism in the Aureole of the Tazheran Alkaline Intrusion; Nauka: Novosibirsk, Russia, 1974; pp. 246. (In Russian). 14. Fedorovsky, V.S.; Sklyarov, E.V.; Mazukabzov, A.M.; Kotov, A.B.; Kargopolov, S.A.; Lavrenchuk, A.V.; Starikova, A.E. Geological Map of the Tazheren Massif; Gruppa Kompanii A: Moscow, Russia, 2009. 15. Sklyarov, E.V.; Fedorovsky, V.S.; Kotov, A.B.; Lavrenchuk, A.V.; Mazukabzov, A.M.; Levitsky, V.I.; Salnikova, E.B.; Starikova, A.E.; Yakovleva, S.Z.; Anisimova, I.V.; et al. Carbonatites in collisional settings and pseudo-carbonatites of the Early Paleozoic Ol’khon collisional system. Russ. Geol. Geophys. 2009, 50, 1091–1106, doi:10.1016/j.rgg.2009.11.008. 16. Donskaya, T.V.; Sklyarov, E.V.; Gladkochub, D.P.; Mazukabzov, A.M. The Baikal collisional metamorphic belt. Doklady Earth Sci. 2000, 374, 1075–1079. 17. Donskaya, T.V.; Gladkochub, D.P.; Fedorovsky, V.S.; Sklyarov, E.V.; Cho, M.; Sergeev, S.A.; Demonterova, E.I.; Mazukabzov, A.M.; Lepekhina, E.N.; Cheong, W.; et al. Pre-collisional (0.5 Ga) complexes of the Olkhon terrane (southern Siberia) as an echo of events in the Central Asian Orogenic Belt. Gondwana Res. 2017, 42, 243–263, doi:10.1016/j.gr.2016.10.016. 18. Fedorovsky, V.S.; Sklyarov, E.V. The Ol’khon Geodynamic Research Site (Baikal): High-Resolution Aerospace Data and Geological Maps of New Generations. Geodyn. Tectonophys. 2010, 1, 331–418. (in Russian with English abstract). 19. Fedorovsky, V.S.; Sklyarov, E.V.; Gladkochub, D.P.; Mazukabzov, A.M.; Donskaya, T.; V; Lavrenchuk, A.V.; Starikova, A.E.; Dobretsov, N.L.; Kotov, A.B.; Tevelev, A.V. Aerospace Geological Map of the Olkhon Region (Baikal, Russia); Copymaster Prof. Cen-ter: Moscow, Russia, 2017. 20. Fedorovsky, V.S.; Sklyarov, E.V.; Gladkochub, D.P.; Mazukabzov, A.M.; Donskaya, T.V.; Lavrenchuk, A.V.; Starikova, A.E.; Dobretsov, N.L.; Kotov, A.B.; Tevelev, A.V. Collision system of West Pribaikalie: Aerospace geological map of Olkhon region (Baikal, Russia). Geodyn. Tectonophys. 2020, 11, 447–452, doi:10.5800/GT-2020-11-3-0485. 21. Sklyarov, E.V.; Fedorovsky, V.S.; Kotov, A.B.; Lavrenchuk, A.V.; Mazukabzov, A.M.; Starikova, A.E. Carbonate and silicate-carbonate injection complexes in collision systems: The West Baikal region as an example. Geotectonics 2013, 47, 180–196, doi:10.1134/S0016852113020064. 22. Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Miner. 2010, 95, 185–187, doi:10.2138/am.2010.3371. 23. Fedorovsky, V.S.; Sklyarov, E.V.; Izokh, A.E.; Kotov, A.B.; Lavrenchuk, A.V.; Mazukabzov, A.M. Strike-slip tectonics and sub-alkaline mafic magmatism in the Early Paleozoic collisional system of the western Baikal region. Russ. Geol. Geophys. 2010, 51, 534–547, doi:10.1016/j.rgg.2010.04.009. 24. Starikova, A.E.; Sklyarov, E.V.; Kotov, A.B.; Salnikova, E.B.; Fedorovskii, V.S.; Lavrenchuk, A.V.; Mazukabzov, A.M. Vein cal-ciphyre and contact Mg skarn from the Tazheran Massif (Western Baikal area, Russia): Age and genesis. Doklady Earth Sci. 2014, 457, 1003–1007, doi:10.1134/S1028334X14080182. 25. Sklyarov, E.V., Karmanov, N.S., Lavrenchuk, A.V., Starikova, A.E. Perovskites of the Tazheran Massif (Baikal, Russia). Minerals 2019, 9, 323, doi:10.3390/min9050323. 26. Sharp, Z.D. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta 1990, 54, 1353–1357. 27. Middlemost, E.A.K. Naming materials in the magma/igneous rock system, Earth Sci. Rev. 1994, 37, 215—224, doi:10.1016/0012-8252(94)90029-9. 28. Lavrenchuk, A.V.; Sklyarov, E.V.; Izokh, A.E.; Kotov, A.B.; Sal’nikova, E.B.; Fedorovskii, V.S.; Mazukabzov, A.M. Compositions of gabbro intrusions in the Krestovsky Zone (Western Baikal Region): A record of plume-suprasubduction mantle interaction. Russ. Geol. Geophys. 2017, 58, 1139–1153, doi:10.15372/GiG20171001. 29. Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. Dev. Geochem. 1984, 2, 63–114. 30. Mollo, S.; Gaeta, M.; Freda, C.; Di Rocco, T.; Misiti, V.; Scarlato, P. Carbonate assimilation in magmas: A reappraisal based on experimental petrology. Lithos 2010, 114, 503–514, doi:10.1016/j.lithos.2009.10.013. 31. Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048, doi:10.2138/am.2012.4276. 32. Wiedenmann, D.; Zaitsev, A.N.; Britvin, S.N.; Krivovechev, S.V.; Keller, J. Alumoakermanite, (Ca, Na)2(Al, Mg Fe2+)(Si2O7), a new mineral from the active carbonatite-nephelinite-phonolite volcano Oldonyo Lengai, Northern Tanzania. Min. Mag. 2009, 73, 373–384, doi:10.1180/minmag.2009.073.3.373. 33. Wiedenmann, D.; Keller, J.; Zaitsev, A.N. Melilite-group minerals at Oldoinyo Lengai, Tanzania. Lithos 2010, 118, 112–118, doi:10.1016/j.lithos.2010.04.002. 34. Yoder, H.S. Melilite stability and paragenesis. Fortschr. Miner. 1973, 50, 140–173. 35. Doroshkevich, A.; Sklyarov, E.; Starikova, A.; Vasiliev, V.; Ripp, G.; Izbrodin, I.; Posokhov, V. Stable isotope (C, O, H) charac-teristics and genesis of the Tazheran brucite marbles and skarns, Olkhon region, Russia. Miner. Petrol. 2016, 115, 153–169, doi:10.1007/s00710-016-0477-8. 36. Zheng, Y.F. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta 1993, 57, 1079– 1091, doi:10.1016/0016-7037(93)90042-U. 37. Valley, J.W. Oxygen isotopes in zircon. Rev. Mineral. Geochem. 2003, 53, 343–385. 38. Li, Q.; Li, X.; Liu, Y.; Wu, F.; Yang, J.; Mitchell, R.H. Precise U–Pb and Th–Pb age determination of kimberlitic perovskites by secondary ion mass spectrometry. Chem. Geol. 2010, 269, 396–405, doi:10.1016/j.chemgeo.2009.10.014. 39. Lavrenchuk, A.V.; Sklyarov, E.V.; Izokh, A.E.; Kotov, A.B.; Vasyukova, E.A.; Fedorovskii, V.S.; Gladkochub, D.P.; Donskaya, T.V.; Mazukabzov, A.M. Birkhin volcanoplutonic association, Ol’khon Region, Western Baikal Area: Petrological criteria of comagmatic origin. Petrology 2019, 27, 291–306, doi:10.1134/S0869591119030044. 40. Sklyarov, E.V.; Lavrenchuk, A.V.; Fedorovsky, V.S.; Gladkochub, D.P.; Donskaya, T.V.; Kotov, A.B.; Mazukabzov, A.M.; Starikova, A.E. Regional contact metamorphism and autometamorphism of the Olkhon Terrane (West Baikal Area). Petrology 2020, 28, 47–61, doi:10.31857/S0869590320010057. 41. Zharikov, A. Skarns. Parts I, II, III. Intern. Geol. Rev. 1970, 12, 541–559, 619-647, 760-775. 42. Burt, D.M. Mineralogy and petrology of skarn deposits. Soc. Ital. Mineral. Petrol. Rendic. 1977, 33, 859–873. 43. Einaudi, M.T.; Meinert, L.D.; Newberry, R.I. Skarn deposits. Econ. Geol. 1981, 12, 327–391. 44. Hoefs, J. Stable Isotope Geochemistry; Springer Science & Business Media: Berlin, Germany, 2015; p. 404. 45. Mitchell, R.H. Carbonatites and carbonatites and carbonatites. Can. Mineral. 2005, 43, 2049–2068, doi:10.2113/gscan-min.43.6.2049. 46. Wyllie, P.J.; Tuttle, O.F. The system CaO-CO2-H2O and the origin of carbonatites. J. Petrol. 1960, 1, 1–46. 47. Fanelli, M.T.; Cava, N.; Wyllie, P.J. Calcite and Dolomite without Portlandite at a New Eutectic in CaO–MgO–CO2–H2O with Applica-tions to Carbonatites. Morphology and Phase Equilibria of Minerals, Proceedings of the 13th General Meeting of the International Mineralogical Association, Varna, Bulgaria, 19–25 September 1986; Bulgarian Academy of Science: Sofia, Bulgaria; pp. 313–322. 48. Drabek, M.; Fryda, J.; Janoushek, V.; Sarbach, M. Regionally metamorphosed carbonatite-like marbles from the Varied Group, Molanubian Unit, Bohemian Massif, Czech Republic, and their Mo–Th–Nb–REE mineralization. In Mineral. Deposits; Stanley, C.J., Ed.; Processes to Processing; Balkema, Rotterdam, The Netherlands, 1999; Volume 1, pp. 635–638. 49. Le Bas, M.J.; Babattat, M.A.O.; Taylor, R.N.; Milton, J.A.; Windley, B.F.; Evins, P.M. The carbonatite–marble dykes of Abyan province, Yemen Republic: The mixing of mantle and crustal carbonate materials revealed by isotope and trace element analysis. Miner. Petrol. 2004, 82, 105–135, doi:10.1007/s00710-004-0056-2. 50. Liu, Y.; Berner, Z.; Massonne, H.-J.; Zhong, D. Carbonatite-like dykes from the eastern Himalayan syntaxis: Geochemical, iso-topic, and petrogenetic evidence for melting of metasedimentary carbonate rocks within the orogenic crust. J. Asian Earth Sci. 2006, 26, 105–120, doi:10.1016/j.jseaes.2004.10.003. 51. Roberts, D.; Zwaan, K.B. Marble dykes emanating from marble layers in an amphibolite-facies, multiply-deformed carbonate succession, Troms, northern Norway. Geol. Mag. 2007, 144, 883–888, doi:10.1017/S0016756807003810. 52. Wan, Y.; Liu, D.; Xu, Z.; Dong, C.; Wang, Z.; Zhou, H.; Yang, Z.; Liu, Z.; Wu, J. Paleoproterozoic crustally derived carbonate-rich magmatic rocks from the Daqinshan area, North China Craton: Geological, petrographical, geochronological and geochemical (Hf, Nd, O and C) evidence. Am. J. Sci. 2008, 308, 351–378, doi:10.2475/03.2008.07. 53. Proskurnin, V.F.; Petrov, O.V.; Gavrish, A.V.; Paderin, P.G.; Mozoleva, I.N.; Petrushkov, B.S.; Bagaeva, A.A. The Early Mesozoic carbonatite belt in the Taimyr Peninsula. Litosfera 2010, 3, 95–102. 54. Schumann, D.; Martin, R.F.; Fuchs, S.; De Fourestier, J. Silicocarbonatitic melt inclusions in fluorapatite from the Yates Prospect, Otter Lake, Quebec: Evidence of marble anataxis in the Central Metasidementary Belt of the Grenville Province. Can. Miner. 2019, 57, 583–604, doi:10.3749/canmin.1900015. 55. Lentz, D.R. Carbonatite genesis: A reexamination of the role of intrusion-related pneumatolytic skarn processes in limestone melting. Geology 1999, 27, 335–338, doi:10.1130/0091-7613(1999)027<0335:CGAROT>2.3.CO;2. 56. Barnes, C.G.; Prestvik, T.; Sundvoll, B.; Surratt, D. Pervasive assimilation of carbonate and silicate rocks in the Hortavaer igneous complex, north-central Norway. Lithos 2005, 80, 179–199, doi:10.1016/j.lithos.2003.11.002. 57. Bowen, N.L. The Evolution of the Igneous Rocks; Princeton University Press: Princeton, NJ, USA, 1928; p. 332. 58. Spandler, C.M.; Lukas, H.J.; Pettke, T. Carbonate assimilation during magma evolution at Nisyros (Greece), South Aegean Arc; evidence from clinopyroxenite xenoliths. Lithos 2012, 146–147, 18–33, doi:10.1016/j.lithos.2012.04.029. 59. Mollo, S.; Vona, A. The geochemical evolution of clinopyroxene in the Roman Province: A window on decarbonation from wallrocks to magma. Lithos 2014, 192–195, 1–7, doi:10.1016/j.lithos.2014.01.009.