Инд. авторы: Dokukina K., Mints M.V., Khubanov V.B., Sheshukov V.S., Konilov A.N., Bayanova T.B., Kaulina T.V., Golunova M.A., Dokukin P.A., Okina O.I., Van K.V., Yudin D.S., Travin A.V., Zaitsev A.V., Kosorukov V.L., Pozhilenko V.I., Golovanova T.I.
Заглавие: Early Palaeoproterozoic granulite-facies metamorphism and partial melting of eclogite-facies rocks in the Salma association, eastern Fennoscandian Shield, Russia
Библ. ссылка: Dokukina K., Mints M.V., Khubanov V.B., Sheshukov V.S., Konilov A.N., Bayanova T.B., Kaulina T.V., Golunova M.A., Dokukin P.A., Okina O.I., Van K.V., Yudin D.S., Travin A.V., Zaitsev A.V., Kosorukov V.L., Pozhilenko V.I., Golovanova T.I. Early Palaeoproterozoic granulite-facies metamorphism and partial melting of eclogite-facies rocks in the Salma association, eastern Fennoscandian Shield, Russia // Precambrian Research. - 2021. - Vol.361. - Art.106260. - ISSN 0301-9268.
Внешние системы: DOI: 10.1016/j.precamres.2021.106260; РИНЦ: 46798039; WoS: 000663340100015;
Реферат: eng: The Salma-type Archaean eclogites exposed along the northwestern boundary of the Belomorian Eclogite Province in the eastern Fennoscandian Shield formed as a result of the Mesoarchaean-Neoarchaean subduction and collision. The common protoliths of the Salma-type subduction-related eclogites were oceanic layered gabbro and volcanic-sedimentary assemblage. The eclogite-facies pillow lavas and associated alumina-siliceous sediments that fill interpillow space and intercalate with lava flows are the main objects of our work. The kyanite-garnet-phengite-quartz rocks formed after alumina-siliceous sediments contain fluid inclusions trapped in large relic quartz grains. The fluid inclusions yielded an isochore that corresponds to PT-conditions of a beginning of the Salma oceanic rock subduction from the seafloor level that generally confirms the sedimentary provenance of these rocks. The alumina-siliceous sediments underwent the eclogite-facies metamorphism at pressure no lower than 21 kbar and temperatures of 650-750 degrees C and transformed into kyanite-garnet-phengite-quartz rocks. During exhumation under granulite-facies conditions at temperatures up to 900 degrees C and pressure down to 9 kbar, eclogite facies metasediments underwent partial melting accompanied by disequilibrium breakdown of phengite + quartz association with formation complex polymineralic pseudomorphs consisting of feldspars, biotite, muscovite, kyanite, corundum, and dumortierite. U-Pb dating of Th-rich igneous zircon from melted metasedimentary and mafic rocks using the LA-ICP-MS and TIMS methods yielded the time of granulite facies event accompanied by partial melting processes at similar to 2.45 Ga. After this, zircon underwent fluid-induced alteration, causing partial dissolution followed by precipitation of new Th-poor zircon and zircon rims around ancient grains at similar to 1.9 Ga ago
Ключевые слова: KURU-VAARA; GRIDINO AREA; NAPIER COMPLEX; KARELIAN CRATON; PALEOPROTEROZOIC ECLOGITES; KOLA-PENINSULA; TRACE-ELEMENT COMPOSITION; BELOMORIAN MOBILE BELT; U-Pb dating; Partial melting; Granulite; Eclogite; Pillow lava; Metasedimentary rocks; U-PB AGE; ZIRCON;
Издано: 2021
Физ. характеристика: 106260
Цитирование: 1. Aranovich, L.Y., Bortnikov, N.S., Zinger, T.F., Borisovskiy, S.E., Matrenichev, V.A., Pertsev, A.N., Sharkov, E.V., Skolotnev, S.G., Morphology and impurity elements of zircon in the oceanic lithosphere at the Mid-Atlantic Ridge axial zone (6–13° N): Evidence of specifics of magmatic crystallization and postmagmatic transformations. Petrology 25:4 (2017), 339–364, 10.1134/S0869591117040026. 2. Baksi, A.K., Archibald, D.A., Farrar, E., Intercalibration of 40Ar/39Ar dating standards. Chem. Geol. 129 (1996), 307–324. 3. Balagansky, V., Shchipansky, A., Slabunov, A., Gorbunov, I., Mudruk, S., Sidorov, M., Azimov, P., Egorova, S., Stepanova, A., Voloshin, A., Archean Kuru-Vaara eclogites in the northern Belomorian Province, Fennoscandian Shield: crustal architecture, timing and tectonic implications. Int. Geol. Rev. 57 (2015), 1543–1565. 4. Bibikova, E.V., Slabunov, A.I., Bogdanova, A.I., Skiöld, T., Stepanov, V.S., Borisova, E.Yu, Early magmatism of the Belomorian Mobile Belt, Baltic Shield: lateral zoning and isotopic age. Petrology 7:2 (1999), 123–146. 5. Brearley, A.J., Rubie, D.C., Effects of H2O on the disequilibrium breakdown of muscovite + quartz. J. Petrol. 31 (1990), 925–956. 6. Carson, C.J., Ague, J.J., Grove, M., Coath, C.D., Harrison, T.M., U-Pb isotopic behavior of zircon during upper-amphibolite facies fluid infiltration in the Napier Complex, east Antarctica. Earth Planet. Sci. Lett. 199 (2002), 287–310. 7. Corfu, F., Hanchar, J.M., Hoskin, P.W.O., & Kinny, P., 2003. Atlas of Zircon Textures. In: Hanchar JM, Hoskin PWO (ed) Zircon: in Review in Mineralogy and Geochemistry, 53, 469–500. 8. Dick, H.J.B., Natland, J.H., Alt, J.C., Bach, W., Bideau, D., Gee, J.S., Haggas, S., Hertogen, J.G.H., Hirth, G., Holm, P.M., Ildefonse, B., Iturrino, G.J., John, B.E., Kelley, D.S., Kikawa, E., Kingdon, A., LeRoux, P.J., Maeda, J., Meyer, P.S., Miller, D.J., Naslund, H.R., Niu, Y.-L., Robinson, P.T., Snow, J., Stephen, R.A., Trimby, P.W., Worm, H.-U., & Yoshinobu, A., 2000. A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters, 179, 31–51. 9. Dokukina K.A. 2017. Granite melts forming in high-pressure conditions (Belomorian eclogite province, Eastern Fennoscandian Shield). GeoScience, 23, 10-27 (in Russian). https://www.elibrary.ru/item.asp?id=30034985. 10. Dokukina, K.A., & Konilov, A.N., 2011. Metamorphic evolution of the Gridino mafic dyke swarm (Belomorian eclogite province, Russia). In: Ultrahigh-Pressure Metamorphism. 5 Years After the Discovery of Coesite and Diamond (eds Dobrzhinetskaya, L.F., Faryad, S.W., & Wallis, S.), pp. 579–621. Elsevier. 11. Dokukina, K.A., Bayanova, T.B., Kaulina, T.V., Travin, V.V., Mints, M.V., Konilov, A.N., Serov, P.A., The Belomorian eclogite province: the sequence of events and the age of magmatic and metamorphic rocks of the Gridino eclogite association. Russ. Geol. Geophys. 53 (2012), 1023–1054. 12. Dokukina, K.A., Bayanova, T.B., Travin, A.V., Kaulina, T.V., Konilov, A.N., New geochronological data for metamorphic and magmatic rocks of the Belomorian eclogites province (Gridino Area, Northern Karelia). Doklady Earth Sci. 432:1 (2010), 671–676. 13. Dokukina, K.A., Kaulina, T.V., Konilov, A.N., Dating of key events in the Precambrian polystage complexes: an example from Archean Belomorian Eclogite Province, Russia. Doklady Earth Sci. 425:2 (2009), 296–301. 14. Dokukina, K.A., Konilov, A.N., Kaulina, T.V., Mints, M.V., Van, K.V., Natapov, L.M., Belousova, E.A., Simakin, S.G., Lepekhina, E.N., Archean to Palaeoproterozoic high-grade evolution of the Belomorian Eclogite Province in Fennoscandian Shield (Gridino area): geochronological evidences. Gondwana Res. 25 (2014), 585–613. 15. Dokukina, K.A., Konilov, A.N., Mints, M.V., Belousova, E.A., Dokukin, P.A., Kaulina, T.V., Natapov, L.M., & Van, K.V., 2015. Mesoarchean–Neoarchean Belomorian Eclogite Province. In: East European Craton: Early Precambrian history and 3D models of deep crustal structure, (eds Condie K. & Harvey F. E.), Boulder, Colorado, Geological Society of America Special Paper, Vol. 510, pp. 56-88. 16. Dokukina, K., Mints, M., Subduction of the Mesoarchean spreading ridge and related metamorphism, magmatism and deformation by the example of the Gridino eclogitized mafic dyke swarm, the Belomorian Eclogite Province, eastern Fennoscandian Shield. J. Geodyn. 123 (2019), 1–37. 17. Dokukina, K.A., Mints, M.V., Konilov, A.N., Melting of eclogite facies sedimentary rocks in the Belomorian Eclogite Province, Russia. J. Metamorph. Geol. 35 (2017), 435–451, 10.1111/jmg.12239. 18. Dokukina K.A., Mints M.V., Konilov A.N., Sheshukov V.S., Khubanov V.B., Bayanova T.B., Van K.V., & Golovanova T.I., 2020. Palaeoproterozoic granulite-facies metamorphism at ~ 2.4 Ga in rocks of the Belomorian eclogite province, Fennoscandian Shield, Russia. GeoScience, 2, 4-23 (in Russian). https://www.elibrary.ru/item.asp?id=43851919. 19. Elkins, L.T., Grove, T.L., Ternary feldspar experiments and thermodynamic models. Am. Mineral. 75 (1990), 544–559. 20. Elliott, T., Plank, T., Zindler, A., White, W., Bourdon, B., Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. 102 (1997), 14991–15019. 21. Erofeeva, K.G., Stepanova, A.V., Samsonov, A.V., Larionova, YuO., Egorova, S.V., Arzamastsev, A.A., Kovalchuk, E.V., 2.4 Ga Mafic Dikes and Sills of Northern Fennoscandia: Petrology and Crustal Evolution. Petrology 27:1 (2019), 17–42. 22. Ewing, R.C., Meldrum, A., Wang, L.M., Weber, W.J., Corrales, L.R., Radiation effects in zircon. Rev. Mineral. Geochem. 53 (2003), 387–425. 23. Ferry, J.M., Watson, E.B., New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Miner. Petrol. 154 (2007), 429–437. 24. Geisler, T., Schaltegger, U., Tomaschek, F., Re-equilibration of zircon in aqueous fluids and melts. Elements 3 (2007), 43–50. 25. Grimes, C.B., John, B.E., Cheadle, M.J., Mazdab, F.K., Wooden, J.L., Swapp, S., Schwartz, J.J., On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib. Miner. Petrol. 158:6 (2009), 757–783, 10.1007/s00410-009-0409-2. 26. Grimes, C.B., John, B.E., Cheadle, M.J., Wooden, J.L., Protracted construction of gabbroic crust at a slow spreading ridge: Constraints from 206Pb/238U zircon ages from Atlantis Massif and IODP Hole U1309D (30°N, MAR). Geochem. Geophys. Geosyst., 9(8), 2008, Q08012, 10.1029/2008gc002063. 27. Groppo, C., Lombardo, B., Rolfo, F., Pertusati, P., Clockwise exhumation path of granulitized eclogites from the Ama Drime range (Eastern Himalayas). J. Metamorph. Geol. 25 (2007), 51–75. 28. Harley, S.L., Extending our understanding of Ultrahigh temperature crustal metamorphism. J. Mineral. Petrol. Sci. 99 (2004), 140–158. 29. Harley, S.L., Kelly, N.M., Möller, A., Zircon behaviour and the thermal histories of mountain chains. Elements 3 (2007), 25–30. 30. Harrison, T.M., Célérier, J., Aikman, A.B., Hermann, J., Heizler, M.T., Diffusion of 40Ar in muscovite. Geochim. Cosmochim. Acta 73:4 (2009), 1039–1051. 31. Hermann, J., Green, D.H., Experimental constraints on high pressure melting in subducted crust. Earth Planet. Sci. Lett. 188 (2001), 149–186. 32. Hillier, S., Quantitative analysis of clay and other minerals in sandstones by X-ray powder diffraction (XRPD). Worden, R., Morad, S., (eds.) Clay Mineral Cements in Sandstones, 2003, International Association of Sedimentologist, Special Publication. Blackwell Science, Oxford International, 213–251. 33. Hofmann, A.W., Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet. Sci. Lett. 90 (1988), 297–314. 34. Hokada, T., Feldspar thermometry in ultrahigh-temperature metamorphic rocks: evidence of crustal metamorphism attaining ~1100°C in the Archean Napier Complex, East Antarctica. Am. Mineral. 86 (2001), 932–938. 35. Hoskin, P.W.O., Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta 69 (2005), 637–648. 36. Hoskin, P.W.O., & Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: (Hanchar, J.M., & Hoskin, P.W.O., Eds.). “Zircon”. Reviews in Mineralogy and Geochemistry. Vol. 53, Chapter 2, 27-62. 37. Imayama, T., Oh, C.-W., Baltybaev, S.K., Park, C.-S., Yi, K., Jung, H., Paleoproterozoic high-pressure metamorphic history of the Salma eclogite on the Kola Peninsula, Russia. Lithosphere 9:6 (2017), 855–873, 10.1130/L657.1. 38. Johnson, M.C., Plank, T., Dehydration and melting experiments constrain the fate of subducted sediments. Geochem. Geophys. Geosyst., 1, 1999, 1999GC000014. 39. Jung, I., Schreyer, W., Synthesis, properties and stability of end member boromuscovite, KAl2[BSi3O10](OH)2. Contrib. Miner. Petrol. 143 (2002), 684–693. 40. Kaczmarek, M.-A., Müntener, O., Rubatto, D., Trace element chemistry and U-Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps). Contrib. Miner. Petrol. 155:3 (2008), 295–312, 10.1007/s00410-007-0243-3. 41. Kaulina, T.V., 2010. Formation and Recrystallization of Zircons in Polimetamorphic Complexes. Kola SC RAS, Apatity, 144 p. (in Russian). 42. Kaulina, T.V., Yapaskurt, V.O., Presnyakov, S.L., Savchenko, E.E., Simakin, S.G., Metamorphic evolution of the Archean eclogite-like rocks of the Shirokaya and Uzkaya Salma area (Kola Peninsula): Geochemical features of zircon, composition of inclusions, and age. Geochem. Int. 48:9 (2010), 871–890, 10.1134/S001670291009003X. 43. Kelsey, D.E., On ultrahigh-temperature crustal metamorphism. Gondwana Res. 13 (2008), 1–29. 44. Konilov, A.N., Shchipansky, A.A., Mints, M.V., Dokukina, K.A., Kaulina, T.V., Bayanova, T.B., Natapov, L.M., Belousova, E.A., Griffin, W.L., & O'Reilly, S.Y., 2011. The Salma eclogites of the Belomorian Province, Russia: HP/UHP metamorphism through the subduction of Mesoarchean oceanic crust. In: Ultrahigh-Pressure Metamorphism. 5 Years After the Discovery of Coesite and Diamond (eds Dobrzhinetskaya, L.F., Faryad, S.W., & Wallis, S.), pp. 623–670. Elsevier. 45. Korhonen, F.J., Stout, J.H., Undeformed kyanite- and borosilicate-bearing veins from the Grenville Province of Labrador: Evidence for rapid uplift. J. Metamorph. Geol. 23 (2005), 297–312. 46. Krogh, T.E., A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37:3 (1973), 485–494. 47. Li, X., Zhang, L., Wei, C., & Slabunov, A.I., 2015. Metamorphic PT path and zircon U-Pb dating of Archean eclogite association in Gridino complex, Belomorian province, Russia. Precambrian Research, 268, 74-96. doi.org/10.1016/j.precamres.2015.07.009. 48. Li, X.L., Zhang, L.F., Wei, C.J., Slabunov, A.I., Bader, T., Neoarchean Paleoproterozoic granulite-facies metamorphism in Uzkaya Salma eclogite-bearing mélange, Belomorian Province (Russia). Precambr. Res. 294 (2017), 257–283. 49. Li, X., Zhang, L., Wei, C., Slabunov, A.I., Bader, T., Quartz and orthopyroxene exsolution lamellae in clinopyroxene and the metamorphic P-T path of Belomorian eclogites. J. Metamorph. Geol. 36:1 (2017), 1–22, 10.1111/jmg.12280. 50. Lindsley, D.H., Nekvasil, H., A ternary feldspar model for all reasons. Eos, 70, 1989, 506. 51. Liu, F., Zhang, L., Li, X., Slabunov, A.I., Wei, C., Bader, T., The metamorphic evolution of Paleoproterozoic eclogites in Kuru-Vaara, northern Belomorian Province, Russia: Constrains from P-T pseudosections and zircon dating. Precambr. Res. 289 (2017), 31–47, 10.1016/j.precamres.2016.11.011. 52. Ludwig, K.R., 1999. User's Manual for Isoplot/Ex, version 2.05: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronol. Center Spec. Publ. 1a. Berkeley, Cal. 53. Ludwig, K.R., 2000. SQUID 1.00. A User's Manual. Berkeley Geochronol. Center Spec. Publ. 2. Berkeley, Cal. 54. Mänttäri, I., Hölttä, P., U-Pb dating of zircons and monazites from Archean granulites in Varpaisjärvi, central Finland: Evidence for multiple metamorphism and Neoarchean terrain accretion. Precambr. Res. 118 (2002), 101–131, 10.1016/S0301-9268(02)00094-3. 55. Martin, A.J., Flaser and wavy bedding in ephemeral streams: a modern and an ancient example. Sed. Geol. 136:1–2 (2000), 1–5. 56. Mints, M.V., Belousova, E.A., Konilov, A.N., Natapov, L.M., Shchipansky, A.A., Griffin, W.L., O'Reilly, S.Y., Dokukina, & K.A., Kaulina, T.V., 2010. Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia. Geology, 38 (8), 739–742. 57. Mints, M.V., Dokukina, K.A., Age of eclogites formed by the subduction of the Mesoarchaean oceanic crust (Salma, Belomorian Eclogite Province, eastern Fennoscandian Shield, Russia): A synthesis. Precambr. Res., 350, 2020, 10.1016/j.precamres.2020.105879. 58. Mints, M.V., Dokukina, K.A., The Belomorian eclogite province (eastern Fennoscandian Shield, Russia): MesoNeoarhean or Late Paleoproterozoic?. Geodynamics Tectonophysics 11:1 (2020), 151–200, 10.5800/GT-2020-11-1-0469. 59. Mints, M.V., Dokukina, K.A., Konilov, A.N., The Meso-Neoarchean Belomorian eclogite province: Tectonic position and geodynamic evolution. Gondwana Res. 25 (2014), 561–584. 60. Mints, M.V., Dokukina, K.A., Konilov, A.N., Belousova, E.A., Dokukin, P.A., Kaulina, T.V., Natapov, L.M., & Van, K.V., 2015. Mesoarchean Kola-Karelia continent. In: East European Craton: Early Precambrian history and 3D models of deep crustal structure, (eds Condie K. & Harvey F. E.), Boulder, Colorado, Geological Society of America Special Paper Vol. 510, pp. 15-88. 61. Moore, D.M., Reynolds, R.C., X-Ray Diffraction and the Identification and Analysis of Clay Minerals. 2nd edition, 1997, Oxford University Press Inc, New York, 400. 62. Nasdala, L., Zhang, M., Kempe, U., Panczer, G., Gaft, M., Andrut, M., Plötze, M., Spectroscopic methods applied to zircon. Rev. Mineral. Geochem. 53:1 (2003), 427–467. 63. Page, F.Z., Essene, E.J., Mukasa, S.B., Prograde and retrograde history of eclogites from the Eastern Blue Ridge, North Carolina, USA. J. Metamorph. Geol. 21 (2003), 685–698. 64. Pearce, J. A., Stern, R.J., Bloomer, S.H. & Fryer, P., 2005. Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems, 6, 2004GC000895. 65. Perchuk, A.L., Morgunova, A.A., Variable P-T paths and HP-UHP metamorphism in a Precambrian terrane, Gridino, Russia: Petrological evidence and geodynamic implications. Gondwana Res. 25 (2014), 614–629. 66. Plank, T., Langmuir, C.H., The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145:3–4 (1998), 325–394. 67. Pozhilenko, V.I., 2013. To the problem of eclogites in the Ensky segment of the Belomorian compound terrane (northeast of the Fennoscandian shield). Materials XLV Tectonic Conference, 163–167, Moscow GEOS (in Russian). 68. Rubatto, D., Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem. Geol. 184 (2002), 123–138. 69. Ryan, J.G., Langmuir, C.H., The systematics of boron abundances in young volcanic rocks. Geochim. Cosmochim. Acta 57 (1993), 1489–1498. 70. Sawyer, E.W., Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks. J. Metamorph. Geol. 18 (2001), 291–309. 71. Sharkov, E.V., Formation of layered intrusions and associated mineralization: Moscow. Scientific World, 2006 368 p. (in Russian). 72. Schreyer, W., Werding, G., High-pressure behaviour of selected boron minerals and the question of boron distribution between fluids and rocks. Lithos 41 (1997), 251–266. 73. Shchipansky, A.A., Khodorevskaya, L.I., Konilov, A.N., Slabunov, A.I., Eclogites from the Belomorian Mobile Belt (Kola Peninsula): geology and petrology. Russ. Geol. Geophys. 53:1 (2012), 1–21. 74. Shchipansky, A.A., Khodorevskaya, L.I., Slabunov, A.I., The geochemistry and isotopic age of eclogites from the Belomorian Belt (Kola Peninsula): evidence for subducted Archean oceanic crust. Russ. Geol. Geophys. 53:3 (2012), 262–280. 75. Shchipansky, A.A., Sidorov, M.Yu. & Pisarev, G.V., 2016. Deep subduction in the Early Precambrian: UHP eclogite diamond-bearing rocks of the north-western part of the Belomorian mobile belt of the Baltic Shield. Materials XLVIII Tectonic Conference “Tectonics, Geodynamics and ore genesis fold belts and platforms”, 2, 323–328, Moscow GEOS (in Russian). 76. Skublov, S.G., Balashov, Y.A., Marin, Y.B., Berezin, A.V., Mel'nik, A.E., Paderin, I.P., U-Pb age and geochemistry of zircons from Salma eclogites (Kuru-Vaara deposit, Belomorian Belt). Dokl. Earth Sci. 432:2 (2010), 791–798. 77. Skublov, S.G., Berezin, A.V., Marin, Y.B., Rizvanova, N.G., Bogomolov, E.S., Sergeeva, N.A., Vasil'eva, I.M., Guseva, V.F., Complex isotopic-geochemical (Sm–Nd, U-Pb) study of Salma eclogites. Dokl. Earth Sci. 434:2 (2010), 1396–1400. 78. Skublov, S.G., Astaf'ev, B.Y., Marin, Y.B., Berezin, A.V., Mel'nik, A.E., Presnyakov, S.L., New data on the age of eclogites from the Belomorian mobile belt at Gridino settlement area. Dokl. Earth Sci. 439:2 (2011), 1163–1170. 79. Skublov, S.G., Berezin, A.V., Mel'nik, A.E., Paleoproterozoic eclogites in the Salma area, northwestern Belomorian mobile belt: composition and isotopic geochronologic characteristics of minerals and metamorphic age. Petrology 19:5 (2011), 470–495. 80. Skublov, S.G., Berezin, A.V., Berezhnaya, N.G., General relations in the trace-element composition of zircons from eclogites with implications for the age of eclogites in the Belomorian mobile belt. Petrology 20:5 (2012), 427–449, 10.1134/S0869591112050062. 81. Slabunov, A.I., Lobach-Zhuchenko, S.B., Bibikova, E.V., Sorjonen-Ward, P., Balangansky, V.V., Volodichev, O.I., Shchipansky, A.A., Svetov, S.A., Chekulaev, V.P., Arestova, N.A., & Stepanov, V.S., 2006. The Archean nucleus of the Fennoscandian (Baltic) Shield. In: European Lithosphere Dynamics (eds Gee, D.G., & Stephenson, R.A.), Memoirs Geological Society London Vol. 32, pp. 627–644. 82. Slabunov, A.I., Korol’, N.E., Berezhnaya, N.G., Volodichev, O.I., & Sibelev, O.S., 2011. Main stages of the mafic granulites formation, Onego complex, Karelian craton: Petrology and isotopic dating (SHRIMP-II) of zircons. In: Granulite and eclogite complexes in the Earth's history. Extended abstracts and field trips guide book. Petrozavodsk, p. 215–217 (in Russian). 83. Slabunov, A.I., Volodichev, O.I., Skublov, S.G., Berezin, A.V., Main stages of the formation of Paleoproterozoic eclogitized gabbro-norite: Evidence from U-Pb (SHRIMP) dating of zircons and study of their genesis. Dokl. Earth Sci. 437 (2011), 396–400. 84. Stepanova, A., Stepanov, V., Palaeoproterozoic mafic dyke swarms of the Belomorian Province, eastern Fennoscandian Shield. Precambr. Res. 183 (2010), 602–616, 10.1016/j.precamres.2010.08.016. 85. Stepanova, A.V., Sal'nikova, E.B., Samsonov, A.V., Egorova, S.V., Larionova, Yu.O., Stepanov, V.S., 2015. The 2.31 Ga mafic dykes in the Karelian Craton, eastern Fennoscandian shield: U–Pb age, source characteristics and implications for continental break-up processes. Precambrian Research, 259, 43-57. 86. Stepanova, A.V., Samsonov, A.V., Sal'nikova, E.B., Puchtel, I.S., Larionova, Yu.O., Larionov, A.N., Stepanov, V.S., Shapovalov, Y.B., Egorova, S.V., 2014. Palaeoproterozoic continental MORB-type tholeiites in the Karelian Craton: petrology, geochronology, and tectonic setting. J. Petrol., 55 (9), 1719-1751. 10.1093/petrology/egu039. 87. Svetov, S.A., 2005. Archean Magmatic Systems of Ocean– Continent Transition Zone in the Eastern Fennoscandian Shield. Petrozavodsk, Russian Academy of Sciences, Karelia Science Center, 230 p. (in Russian). 88. Svetov, S.A., Medvedev, P.V., Chemically precipitated siliceous rocks of Mesoarchean age – a unique environment for preservation of the early life traces. Lithosphere 6 (2013), 3–13 (in Russian). 89. Svetov, S.A., Svetova, A.I., The REE Systematics of Upper Archean Sedimentary Assemblages in Central Karelia. Dokl. Earth Sci. 394:1 (2004), 104–108. 90. Svetova, A.I., Svetov, S.A., Nazarova, T.N., Mesoarchean sedimentary ensembles in ophiolite-like complexes of the Central Karelian terrain. Geology Mineral Deposits Karelia 5 (2008), 100–111 (in Russian). 91. Sun, S.S., & McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: (Saunders, A.D., Norry, M.J., Eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42, pp. 313-345. 92. Thompson, A.B., Dehydration melting of pelitic rocks and the generation of H2O undersaturated granitic liquids. Am. J. Sci. 282 (1982), 1567–1595. 93. Vavra, G., Schmid, R., Gebauer, D., Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib. Miner. Petrol. 134 (1999), 380–404. 94. Vielzeuf, D., Holloway, J.R., Experimental determination of the fluid absent melting relations in the pelitic system. Contrib. Miner. Petrol. 98 (1988), 257–276. 95. Volodichev, O.I., Slabunov, A.I., Bibikova, E.V., Konilov, A.N., Kuzenko, T.I., Archean eclogites in the Belomorian mobile belt, Baltic Shield. Petrology 12:6 (2004), 540–560. 96. Volodichev, O.I., Slabunov, A.I., Sibelev, O.S., Skublov, S.G., Kuzenko, T.I., Geochronology, mineral inclusions, and geochemistry of zircons in eclogitized gabbronorites in the Gridino area, Belomorian Province. Geochem. Int. 50:8 (2012), 657–670. 97. Whitney, D.L., Evans, B.W., Abbreviations for names of rock-forming minerals. Am. Mineral. 95 (2010), 185–187. 98. Yu, H., Zhang, L., Wei, C., Li, X., Guo, J., Bader, T., Qi, Y., The metamorphic evolution of Salma-type eclogite in Russia: Constraints fromzircon/titanite dating and phase equilibria modeling. Precambr. Res. 326 (2018), 363–384, 10.1016/j.precamres.2018.01.019.