Инд. авторы: Bekker T., Litasov K., Shatskiy A., Sagatov N., Podborodnikov I., Krinitsin P.
Заглавие: Experimental and Ab Initio Investigation of the Formation of Phosphoran Olivine
Библ. ссылка: Bekker T., Litasov K., Shatskiy A., Sagatov N., Podborodnikov I., Krinitsin P. Experimental and Ab Initio Investigation of the Formation of Phosphoran Olivine // ACS Earth and Space Chemistry. - 2021. - Vol.5. - Iss. 6. - P.1373-1383. - ISSN 2472-3452.
Внешние системы: DOI: 10.1021/acsearthspacechem.1c00011; РИНЦ: 46864398; WoS: 000664308000011;
Реферат: eng: With the use of both experimental and numerical methods, the conditions required for phosphoran olivine formation as well as its structural features and thermodynamic stability have been studied. Olivine containing up to 35 wt % P2O5 was synthesized in evacuated quartz glass ampoules at temperatures of 1373, 1473, and 1573 K using San Carlos olivine or an oxide mixture blended with either magnesium phosphate Mg-3(PO4)(2) or iron phosphide FeP and studied by scanning electron microscopy/energy-dispersive spectrometry, wavelength-dispersive spectroscopy analysis, X-ray powder diffraction, and Raman spectroscopy. The inhomogeneity of the composition of synthesized phosphoran olivines as well as the results of first-principles calculations unequivocally indicates their metastable crystallization. The absence of the shift of phosphoran olivine X-ray diffraction reflections with respect to phosphoran-free olivine might indicate that the entry of phosphorus in olivine causes only a slight distortion of the structure, which is consistent with the results of first-principles calculations. The position of the Raman bands associated with the most intensive internal vibration modes of [SiO4](4-) tetrahedra at 824 and 857 cm(-1) and [PO4](3-) tetrahedra at 981 cm(-1) does not change with respect to phosphoran-free olivine and farringtonite, respectively. Their relative intensities in phosphoran olivine may reflect the Si/P ratio. The phosphoran olivine formation energy is dependent on the distance between [PO4](3-) tetrahedra in the structure. With the use of first-principles calculations, it has been shown that neither pressure in the range from 0 to 8 GPa nor temperature in the range from 0 to 1500 K favors the equilibrium entry of phosphorus into olivine at concentrations equal to or exceeding 6.3 wt %.
Ключевые слова: SPECTRA; PYROXENE; PETROLOGY; PHOSPHATE; MINERALOGY; FORSTERITE; SARCOPSIDE; PHASE-RELATIONS; first-principles calculations; Raman spectroscopy; X-ray powder diffraction; solid-state synthesis; phosphoran olivine; IRON; FE7C3;
Издано: 2021
Физ. характеристика: с.1373-1383
Цитирование: 1. Boesenberg, J. S.; Hewins, R. H. An experimental investigation into the metastable formation of phosphoran olivine and pyroxene. Geochim. Cosmochim. Acta 2010, 74, 1923-1941, 10.1016/j.gca.2009.12.008 2. Buseck, P. R. Pallasite meteorites-mineralogy, petrology and geochemistry. Geochim. Cosmochim. Acta 1977, 41, 711-740, 10.1016/0016-7037(77)90044-8 3. Sonzogni, Y.; Devouard, B.; Provost, A.; Devidal, J. Evidence for two-stage melting in the Brahin pallasite parent body. American Geophysical Union-Fall Meeting, San Francisco, 2009; p P12B-01. 4. Grew, E. S.; Armbruster, T.; Medenbach, O.; Yates, M. G.; Carson, C. J. Chopinite, [(Mg,Fe)3](PO4)2, a new mineral isostructural with sarcopside, from a fluorapatite segregation in granulite-facies paragneiss, Larsemann Hills, Prydz Bay, East Antarctica. Eur. J. Mineral. 2007, 19, 229-245, 10.1127/0935-1221/2007/0019-1712 5. Tropper, P.; Recheis, A.; Konzett, J. Pyrometamorphic formation of phosphorus-rich olivines in partially molten metapelitic gneisses from a prehistoric sacrificial burning site (Otz Valley, Tyrol, Austria). Eur. J. Mineral. 2004, 16, 631-640, 10.1127/0935-1221/2004/0016-0631 6. Schneider, P.; Tropper, P.; Kaindl, R. The formation of phosphoran olivine and stanfieldite from the pyrometamorphic breakdown of apatite in slags from a prehistoric ritual immolation site (Goldbichl, Igls, Tyrol, Austria). Mineral. Petrol. 2013, 107, 327-340, 10.1007/s00710-012-0255-1 7. Hurlbut, C. S., Jr. Detailed description of sarcopside from East Alstead, New Hampshire. Am. Mineral. 1965, 50, 1698-1707 8. Goodrich, C. A. Phosphoran pyroxene and olivine in silicate inclusions in natural iron-carbon alloy, Disko Island, Greenland. Geochim. Cosmochim. Acta 1984, 48, 1115-1126, 10.1016/0016-7037(84)90202-3 9. Agrell, S. O.; Charnley, N. R.; Chinner, G. A. Phosphoran olivine from Pine Canyon, Piute Co., Utah. Mineral. Mag. 1998, 62, 265-269, 10.1180/002646198547620 10. Boesenberg, J. S. Wrought iron from the USS monitor: mineralogy, petrology and metallography. Archaeometry 2006, 48, 613-631, 10.1111/j.1475-4754.2006.00276.x 11. Milman-Barris, M. S.; Beckett, J. R.; Baker, M. B.; Hofmann, A. E.; Morgan, Z.; Crowley, M. R.; Vielzeuf, D.; Stolper, E. Zoning of phosphorus in igneous olivine. Contrib. Mineral. Petrol. 2008, 155, 739-765, 10.1007/s00410-007-0268-7 12. McDonough, W. F.; Sun, S. The composition of the Earth. Chem. Geol. 1995, 120, 223-253, 10.1016/0009-2541(94)00140-4 13. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864, 10.1103/physrev.136.b864 14. Lavrent'ev, Y. G.; Karmanov, N. S.; Usova, L. V. Electron probe microanalysis of minerals: Microanalyzer or scanning electron microscope?. Russ. Geol. Geophys. 2015, 56, 1154-1161, 10.1016/j.rgg.2015.07.006 15. Litasov, K. D.; Podgornykh, N. M. Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite. J. Raman Spectrosc. 2017, 48, 1518-1527, 10.1002/jrs.5119 16. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169, 10.1103/physrevb.54.11169 17. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758, 10.1103/physrevb.59.1758 18. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865, 10.1103/physrevlett.77.3865 19. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B: Solid State 1976, 13, 5188, 10.1103/physrevb.13.5188 20. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1-5, 10.1016/j.scriptamat.2015.07.021 21. Sagatov, N.; Gavryushkin, P. N.; Inerbaev, T. M.; Litasov, K. D. New high-pressure phases of Fe7N3and Fe7C3stable at Earth's core conditions: evidences for carbon-nitrogen isomorphism in Fe-compounds. RSC Adv. 2019, 9, 3577-3581, 10.1039/c8ra09942a 22. Sagatov, N. E.; Gavryushkin, P. N.; Medrish, I. V.; Inerbaev, T. M.; Litasov, K. D. Phase relations of iron carbides Fe2C, Fe3C, and Fe7C3at the Earth's core pressures and temperatures. Russ. Geol. Geophys. 2020, 61, 1345-1353, 10.15372/rgg2019146 23. Hong, J.-H.; Song, S.-W.; Hong, S.-T. Strontium magnesium phosphate, Sr2+xMg3-xP4O15(x ∼0.36), from laboratory X-ray powder data. Acta Crystallogr., Sect. C. 2011, 67, i1-i3, 10.1107/s0108270110047967 24. Lutterotti, L.; Matthies, S.; Wenk, H.-R. MAUD (material analysis using diffraction): a user friendly Java program for Rietveld texture analysis and more. Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12); NRC Research Press: Ottowa, Canada, 1999. 25. Ghose, S. Mg2+-Fe2+order in an orthopyroxene, Mg0.93Fe1.07Si2O6. Z. Kristallogr.-Cryst. Mater. 1965, 122, 81-99, 10.1524/zkri.1965.122.1-2.81 26. Smyth, J. R.; Hazen, R. M. The crystal structures of forsterite and hortonolite at several temperatures up to 900 °C. Am. Mineral. 1973, 58, 588-593 27. Servoin, J. L.; Piriou, B. Infrared reflectivity and Raman scattering of Mg2SiO4single crystal. Phys. Status Solidi B 1973, 55, 677-686, 10.1002/pssb.2220550224 28. Iishi, K. Lattice dynamics of forsterite. Am. Mineral. 1978, 63, 1198-1208 29. Piriou, B.; McMillan, P. The high-frequency vibrational spectra of vitreous and crystalline orthosilicates. Am. Mineral. 1983, 68, 426-443 30. Chopelas, A. Single crystal Raman spectra of forsterite, fayalite, and monticellite. Am. Mineral. 1991, 76, 1101-1109 31. Kolesov, B. A.; Geiger, C. A. A Raman spectroscopic study of Fe-Mg olivines. Phys. Chem. Miner. 2004, 31, 142-154, 10.1007/s00269-003-0370-y 32. Kuebler, K. E.; Jolliff, B. L.; Wang, A.; Haskin, L. A. Extracting olivine (Fo-Fa) compositions from Raman spectral peak positions. Geochim. Cosmochim. Acta 2006, 70, 6201-6222, 10.1016/j.gca.2006.07.035 33. DuFresne, E. R.; Roy, S. K. A new phosphate mineral from the Springwater pallasite. Geochim. Cosmochim. Acta 1961, 24, 198-205, 10.1016/0016-7037(61)90017-5 34. Hu, X.; Liu, L.; Zhai, S. The structure-Raman spectra relationships of Mg3(PO4)2polymorphs: A comprehensive experimental and DFT study. Spectrochim. Acta, Part A 2021, 245, 118906, 10.1016/j.saa.2020.118906 35. Brunet, F.; Vielzeuf, D. The farringtonite/Mg3(PO4)2-II transformation; a new curve for pressure calibration in piston-cylinder apparatus. Eur. J. Mineral. 1996, 8, 349-354, 10.1127/ejm/8/2/0349 36. Brunet, F.; Chopin, C.; Seifert, F. Phase relations in the MgO-P2O5-H2O system and the stability of phosphoellenbergerite: petrological implications. Contrib. Mineral. Petrol. 1998, 131, 54-70, 10.1007/s004100050378 37. Marcondes, M. L.; Wentzcovitch, R. M.; Assali, L. V. C. Importance of van der Waals interaction on structural, vibrational, and thermodynamic properties of NaCl. Solid State Commun. 2018, 273, 11-16, 10.1016/j.ssc.2018.01.008 38. Gavryushkin, P. N.; Bekhtenova, A.; Lobanov, S. S.; Shatskiy, A.; Likhacheva, A. Y.; Sagatova, D.; Sagatov, N.; Rashchenko, S. V.; Litasov, K. D.; Sharygin, I. S.; Goncharov, A. F.; Prakapenka, V. B.; Higo, Y. High-pressure phase diagrams of Na2CO3and K2CO3. Minerals 2019, 9, 599, 10.3390/min9100599 39. Goodrich, C. A.; Barnes, S. J. Is phosphorus predictably incompatible in igneous processes? Papers Presented to the Conference on the Origin of the Moon; Lunar and Planetary Institute, 1984; p 540.