Инд. авторы: Inerbaev T.M., Xia W.J., Kilin D.S.
Заглавие: Magnetic-Field-Driven Electron Dynamics in Graphene
Библ. ссылка: Inerbaev T.M., Xia W.J., Kilin D.S. Magnetic-Field-Driven Electron Dynamics in Graphene // JOURNAL OF PHYSICAL CHEMISTRY LETTERS. - 2021. - Vol.12. - Iss. 19. - P.4749-4754. - ISSN 1948-7185.
Внешние системы: DOI: 10.1021/acs.jpclett.1c01020; РИНЦ: 46775210; PubMed: 33983028; WoS: 000655640200035;
Реферат: eng: Graphene exhibits unique optoelectronic properties originating from the band structure at the Dirac points. It is an ideal model structure to study the electronic and optical properties under the influence of the applied magnetic field. In graphene, electric field, laser pulse, and voltage can create electron dynamics which is influenced by momentum dispersion. However, computational modeling of momentum-influenced electron dynamics under the applied magnetic field remains challenging. Here, we perform computational modeling of the photoexcited electron dynamics achieved in graphene under an applied magnetic field. Our results show that magnetic field leads to local deviation from momentum conservation for charge carriers. With the increasing magnetic field, the delocalization of electron probability distribution increases and forms a cyclotron-like trajectory. Our work facilitates understanding of momentum resolved magnetic field effect on non-equilibrium properties of graphene, which is critical for optoelectronic and photovoltaic applications.
Ключевые слова: CARBON; 2-DIMENSIONAL MATERIALS; TRANSPORT; COLLOQUIUM;
Издано: 2021
Физ. характеристика: с.4749-4754
Цитирование: 1. Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R. et al. Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano 2015, 9, 11509-11539, 10.1021/acsnano.5b05556 2. Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F. et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 2013, 7, 2898-2926, 10.1021/nn400280c 3. Wilson, J. A.; Yoffe, A. D. The Transition Metal Dichalcogenides Discussion and Interpretation of the Observed Optical, Electrical and Structural Properties. Adv. Phys. 1969, 18, 193-335, 10.1080/00018736900101307 4. Bednorz, J. G.; Müller, K. A. Possible High Tc Superconductivity in the Ba-La-Cu-O System. Z. Phys. B: Condens. Matter 1986, 64, 189-193, 10.1007/BF01303701 5. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438, 197-200, 10.1038/nature04233 6. Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene. Nature 2005, 438, 201-204, 10.1038/nature04235 7. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109-162, 10.1103/RevModPhys.81.109 8. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183-191, 10.1038/nmat1849 9. Hasan, M. Z.; Kane, C. L. Colloquium: Topological Insulators. Rev. Mod. Phys. 2010, 82, 3045-3067, 10.1103/RevModPhys.82.3045 10. Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132-145, 10.1021/cr900070d 11. Viculis, L. H.; Mack, J. J.; Kaner, R. B. A Chemical Route to Carbon Nanoscrolls. Science 2003, 299, 1361-1361, 10.1126/science.1078842 12. Park, S.; Ruoff, R. S. Chemical Methods for the Production of Graphenes. Nat. Nanotechnol. 2009, 4, 217-224, 10.1038/nnano.2009.58 13. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30-35, 10.1021/nl801827v 14. Chaves, A.; Covaci, L.; Rakhimov, K. Y.; Farias, G. A.; Peeters, F. M. Wave-Packet Dynamics and Valley Filter in Strained Graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 205430, 10.1103/PhysRevB.82.205430 15. Haldane, F. D. M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly. Phys. Rev. Lett. 1988, 61, 2015-2018, 10.1103/PhysRevLett.61.2015 16. Zheng, Y.; Ando, T. Hall. Conductivity of a Two-Dimensional Graphite System. Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 65, 245420, 10.1103/PhysRevB.65.245420 17. Winzer, T.; Knorr, A.; Malic, E. Carrier Multiplication in Graphene. Nano Lett. 2010, 10, 4839-4843, 10.1021/nl1024485 18. Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-Based Electronics. Nat. Nanotechnol. 2007, 2, 605-615, 10.1038/nnano.2007.300 19. Neto, A. H. C.; Novoselov, K. New Directions in Science and Technology: Two-Dimensional Crystals. Rep. Prog. Phys. 2011, 74, 082501, 10.1088/0034-4885/74/8/082501 20. Kotov, V. N.; Uchoa, B.; Pereira, V. M.; Guinea, F.; Castro Neto, A. H. Electron-Electron Interactions in Graphene: Current Status and Perspectives. Rev. Mod. Phys. 2012, 84, 1067-1125, 10.1103/RevModPhys.84.1067 21. Peres, N. M. R. Colloquium: The Transport Properties of Graphene: An Introduction. Rev. Mod. Phys. 2010, 82, 2673-2700, 10.1103/RevModPhys.82.2673 22. Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y. S. Synthesis of Graphene and Its Applications: A Review. Crit. Rev. Solid State Mater. Sci. 2010, 35, 52-71, 10.1080/10408430903505036 23. Schwierz, F. Graphene Transistors. Nat. Nanotechnol. 2010, 5, 487-496, 10.1038/nnano.2010.89 24. Avouris, P. Graphene: Electronic and Photonic Properties and Devices. Nano Lett. 2010, 10, 4285-4294, 10.1021/nl102824h 25. Abergel, D. S. L.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T. Properties of Graphene: A Theoretical Perspective. Adv. Phys. 2010, 59, 261-482, 10.1080/00018732.2010.487978 26. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene Photonics and Optoelectronics. Nat. Photonics 2010, 4, 611-622, 10.1038/nphoton.2010.186 27. Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E. Electronic Transport in Two-Dimensional Graphene. Rev. Mod. Phys. 2011, 83, 407-470, 10.1103/RevModPhys.83.407 28. Young, A. F.; Kim, P. Electronic Transport in Graphene Heterostructures. Annu. Rev. Condens. Matter Phys. 2011, 2, 101-120, 10.1146/annurev-conmatphys-062910-140458 29. Beenakker, C. W. J. Colloquium: Andreev Reflection and Klein Tunneling in Graphene. Rev. Mod. Phys. 2008, 80, 1337-1354, 10.1103/RevModPhys.80.1337 30. Goerbig, M. O. Electronic Properties of Graphene in a Strong Magnetic Field. Rev. Mod. Phys. 2011, 83, 1193-1243, 10.1103/RevModPhys.83.1193 31. Basov, D. N.; Fogler, M. M.; Lanzara, A.; Wang, F.; Zhang, Y. Colloquium: Graphene Spectroscopy. Rev. Mod. Phys. 2014, 86, 959-994, 10.1103/RevModPhys.86.959 32. Kampfrath, T.; Perfetti, L.; Schapper, F.; Frischkorn, C.; Wolf, M. Strongly Coupled Optical Phonons in the Ultrafast Dynamics of the Electronic Energy and Current Relaxation in Graphite. Phys. Rev. Lett. 2005, 95, 187403, 10.1103/PhysRevLett.95.187403 33. Butscher, S.; Milde, F.; Hirtschulz, M.; Malić, E.; Knorr, A. Hot Electron Relaxation and Phonon Dynamics in Graphene. Appl. Phys. Lett. 2007, 91, 203103, 10.1063/1.2809413 34. Chatzakis, I.; Yan, H.; Song, D.; Berciaud, S.; Heinz, T. F. Temperature Dependence of the Anharmonic Decay of Optical Phonons in Carbon Nanotubes and Graphite. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, 205411, 10.1103/PhysRevB.83.205411 35. Breusing, M.; Ropers, C.; Elsaesser, T. Ultrafast Carrier Dynamics in Graphite. Phys. Rev. Lett. 2009, 102, 086809-086809, 10.1103/PhysRevLett.102.086809 36. Yan, H.; Song, D.; Mak, K. F.; Chatzakis, I.; Maultzsch, J.; Heinz, T. F. Time-Resolved Raman Spectroscopy of Optical Phonons in Graphite: Phonon Anharmonic Coupling and Anomalous Stiffening. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 80, 121403, 10.1103/PhysRevB.80.121403 37. Wang, H.; Strait, J. H.; George, P. A.; Shivaraman, S.; Shields, V. B.; Chandrashekhar, M.; Hwang, J.; Rana, F.; Spencer, M. G.; Ruiz-Vargas, C. S.; Park, J. et al. Ultrafast Relaxation Dynamics of Hot Optical Phonons in Graphene. Appl. Phys. Lett. 2010, 96, 081917, 10.1063/1.3291615 38. Sun, D.; Wu, Z. K.; Divin, C.; Li, X.; Berger, C.; De Heer, W. A.; First, P. N.; Norris, T. B. Ultrafast Relaxation of Excited Dirac Fermions in Epitaxial Graphene Using Optical Differential Transmission Spectroscopy. Phys. Rev. Lett. 2008, 101, 157402-157402, 10.1103/PhysRevLett.101.157402 39. Kang, K.; Abdula, D.; Cahill, D. G.; Shim, M. Lifetimes of Optical Phonons in Graphene and Graphite by Time-Resolved Incoherent Anti-Stokes Raman Scattering. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 165405, 10.1103/PhysRevB.81.165405 40. Lui, C. H.; Mak, K. F.; Shan, J.; Heinz, T. F. Ultrafast Photoluminescence from Graphene. Phys. Rev. Lett. 2010, 105, 127404-121404, 10.1103/PhysRevLett.105.127404 41. Hale, P. J.; Hornett, S. M.; Moger, J.; Horsell, D. W.; Hendry, E. Hot Phonon Decay in Supported and Suspended Exfoliated Graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, 121404, 10.1103/PhysRevB.83.121404 42. Breusing, M.; Kuehn, S.; Winzer, T.; Malić, E.; Milde, F.; Severin, N.; Rabe, J. P.; Ropers, C.; Knorr, A.; Elsaesser, T. Ultrafast Nonequilibrium Carrier Dynamics in a Single Graphene Layer. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, 153410, 10.1103/PhysRevB.83.153410 43. Gusynin, V. P.; Sharapov, S. G.; Carbotte, J. P. Anomalous Absorption Line in the Magneto-Optical Response of Graphene. Phys. Rev. Lett. 2007, 98, 157402-157402, 10.1103/PhysRevLett.98.157402 44. Jiang, Z.; Henriksen, E. A.; Tung, L. C.; Wang, Y. J.; Schwartz, M. E.; Han, M. Y.; Kim, P.; Stormer, H. L. Infrared Spectroscopy of Landau Levels of Graphene. Phys. Rev. Lett. 2007, 98, 197403-197403, 10.1103/PhysRevLett.98.197403 45. Deacon, R. S.; Chuang, K. C.; Nicholas, R. J.; Novoselov, K. S.; Geim, A. K. Cyclotron Resonance Study of the Electron and Hole Velocity in Graphene Monolayers. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76, 081406, 10.1103/PhysRevB.76.081406 46. Gierz, I.; Link, S.; Starke, U.; Cavalleri, A. Non-Equilibrium Dirac Carrier Dynamics in Graphene Investigated with Time-and Angle-Resolved Photoemission Spectroscopy. Faraday Discuss. 2014, 171, 311-321, 10.1039/C4FD00020J 47. Fatima, F.; Han, Y.; Vogel, D. J.; Inerbaev, T. M.; Oncel, N.; Hobbie, E. K.; Kilin, D. S. Photoexcited Electron Lifetimes Influenced by Momentum Dispersion in Silicon Nanowires. J. Phys. Chem. C 2019, 123, 7457-7466, 10.1021/acs.jpcc.9b00639 48. Fatima; Vogel, D. J.; Han, Y.; Inerbaev, T. M.; Oncel, N.; Kilin, D. S. First-Principles Study of Electron Dynamics with Explicit Treatment of Momentum Dispersion on Si Nanowires along Different Directions. Mol. Phys. 2019, 117, 2293-2302, 10.1080/00268976.2018.1538624 49. Fatima; Vogel, J.; Inerbaev, T.; Oncel, N.; Kilin, D. First-Principles Study of Charge Carrier Dynamics with Explicit Treatment of Momentum Dispersion on Si Nanowires along < 211> Crystallographic Directions. MRS Adv. 2018, 3, 3477-3482, 10.1557/adv.2018.560 50. Fatima; Forde, A.; Inerbaev, T. M.; Oncel, N.; Kilin, D. S. Time-Resolved Optical Properties of SiNW Oriented in Crystallographic Direction. MRS Adv. 2019, 4, 2009-2014, 10.1557/adv.2019.267 51. Nicholls, D.; Fatima; Caklr, D.; Oncel, N. Silicene-Like Domains on IrSi3Crystallites. J. Phys. Chem. C 2019, 123, 7225-7229, 10.1021/acs.jpcc.9b00550 52. Fatima; Can Oguz, I.; Caklr, D.; Hossain, S.; Mohottige, R.; Gulseren, O.; Oncel, N. On the Structural and Electronic Properties of Ir-Silicide Nanowires on Si(001) Surface. J. Appl. Phys. 2016, 120, 095303, 10.1063/1.4961550 53. Hosseingholipourasl, A.; Hafizah Syed Ariffin, S.; Al-Otaibi, Y. D.; Akbari, E.; Hamid, F.; Koloor, S.; Petrů, M. Analytical Approach to Study Sensing Properties of Graphene Based Gas Sensor. Sensors 2020, 20, 1506, 10.3390/s20051506