Инд. авторы: Siemek K., Horodek P., Yelisseyev A.P., Lobanov S.I., Goloshumova A.A., Isaenko L.I., Belushkin A.V.
Заглавие: Optical and positron annihilation studies of structural defects in liinse2 single crystals
Библ. ссылка: Siemek K., Horodek P., Yelisseyev A.P., Lobanov S.I., Goloshumova A.A., Isaenko L.I., Belushkin A.V. Optical and positron annihilation studies of structural defects in liinse2 single crystals // Optical Materials. - 2020. - Vol.109. - Art.110262. - ISSN 0925-3467. - EISSN 1873-1252.
Внешние системы: DOI: 10.1016/j.optmat.2020.110262; РИНЦ: 45378667;
Реферат: eng: Lithium-indium di-selenide (LiInSe2) is a semiconductor material, which has been shown promising for applications in nonlinear optics and neutron detection. LiInSe2 crystals of optical quality, of different (from greenish to red) color were grown. Analysis of the fundamental absorption edge shows allowed direct band-to-band transitions and reveals structural disorder leading to the blurring of the edges of valence and conduction bands. Photoluminescence (PL) intensity is low in LiInSe2 of stoichiometric composition and increases after sample annealing in Se vapors. A narrow line at 408 nm is associated with free excitons. Analysis of PL and PL excitation spectra allows one to associate broad emission bands with point defects as well as with self-trapped excitons. The mean positron lifetime increases after annealing in Se vapor as a result of changes of the dominating defect type. For red crystals only big voids with lifetime of about 1021 ps are observed. Both methods suggest that greenish and red coloring of LiInSe2 are due to Se vacancies and interstitial Se atoms, respectively.
Ключевые слова: semiconductor; positron annihilation; point defects; photoluminescence; Lithium-indium di-selenide; absorption;
Издано: 2020
Физ. характеристика: 110262
Цитирование: 1. Negran, T., Kasper, H., Glass, A., Pyroelectric and electrooptic effects in LiInS2 and LiInSe2. Mater. Res. Bull., 8, 1973, 743. 2. Kamijoh, T., Kuriyama, K., Single crystal growth and characterization of LiInSe2. J. Cryst. Growth, 51, 1981, 6. 3. Kamijoh, T., Kuriyama, K., Annealing effects on electrical properties of LiInSe2. J. Appl. Phys., 52, 1981, 1102. 4. Hönle, W., Kühn, G., Neumann, H., Die Kristallstruktur von LiInSe2. Z. Anorg. Allg. Chem., 543, 1986, 161. 5. Isaenko, L., Vasilyeva, I., Merkulov, A., Yelisseyev, A., Lobanov, S., Growth of new nonlinear crystals LiMeX2 (M=Al, In, Ga; X=S, Se, Te) for the mid-IR optics. J. Cryst. Growth, 275, 2005, 217. 6. Isaenko, L., Yelisseyev, A., Lobanov, S., Petrov, V., Rotermund, F., Slekys, G., Zondy, J.-J., A biaxial ternary chalcogenide crystal for nonlinear applications in the mid Infrared. J. Appl. Phys., 91, 2002, 9475. 7. Isaenko, L., Yelisseyev, A., Lobanov, S., Krinitsin, P., Petrov, V., Zondy, J.-J., Ternary chalcogenides LiBC2 (B=In, Ga; C=S, Se, Te) for mid-IR nonlinear optics. J. Non-Cryst. Solids, 352, 2006, 2439. 8. Kamijoh, T., Nozaki, T., Kuriyama, K., A Photoluminescence study of lithium ternary compounds. Il Nuovo Cimento D, 2, 1983, 2020. 9. Cui, Y., Bhattacharya, P., Bulga, V., Tupitsyn, E., Rowe, E., Wiggins, B., Johnstone, D., Stowe, A., Burger, A., Defects in 6LiInSe2 neutron detector investigated by photo-induced current transient spectroscopy and photoluminescence. Appl. Phys. Lett., 103, 2013, 092104. 10. Petrov, V., Zondy, J.-J., Bidault, O., Isaenko, L., Vedenyapin, V., Yelisseyev, A., Chen, W., Tyazhev, A., Lobanov, S., Marchev, G., Kolker, D., Optical, thermal, electric, damage and phase-matching properties of lithium selenoindate. J. Opt. Soc. Am. B, 27, 2010, 1902. 11. Tupitsyn, E., Bhattacharya, P., Rowe, E., Matei, L., Goza, M., Wiggins, B., Burger, A., Stowe, A., Single crystal of LiInSe2 semiconductor for neutron detector. Appl. Phys. Lett., 101, 2012, 202101. 12. Lukosi, E., Chvala, O., Stowe, A., Response functions of semiconducting lithium indium diselenide. Nucl. Instr. Meth. Phys. A, 822, 2016, 9. 13. Guo, L., Xu, Y., Zheng, H., Xue, W., Dong, J., Zhang, B., He, Y., Zha, G., Chung, D.Y., Jie, W., Kanatzidis, M.G., Stoichiometric effects on the photoelectric properties of LiInSe2 crystals for neutron detection. Cryst. Growth Des., 18, 2018, 2864. 14. Herrera, E., Hamm, D., Wiggins, B., Milburn, R., Burger, A., Bilheux, H., Santodonato, L., Chvala, O., Stowe, A., Lukosi, E., LISe pixel detector for neutron imaging. Nucl. Instr. Meth. Phys. A, 833, 2016, 142. 15. Vijayakumar, P., Magesh, M., Arunkumar, A., Anandha Babu, G., Ramasamy, P., Abhaya, S., Investigations on synthesis, growth, electrical and defect studies of lithium selenoindate single crystals. J. Cryst. Growth, 388, 2014, 17. 16. Vasilyeva, I.G., Pochtar, A.A., Isaenko, L.I., Origin of the solid solution in the LiInSe2-In2Se3 system. J. Solid State Chem., 220, 2014, 91. 17. Zhurkova, I.S., Investigation of Pressure and Temperature Effect on Crystal Structure and Properties of LiGaS2, LiGaSe2, LiInSe2, LiIn0.5Ga0.5Se2, Magister Thesis., 2012, Novosibirsk State University, Novosibirsk, Russia. 18. Tauc, J., Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull., 3, 1967, 37. 19. Kansy, J., Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instr. Meth. Phys. A., 374, 1996, 235. 20. Blochl, P.E., Projector Augmented-wave method. Phys. Rev. B, 50, 1994, 17953. 21. ABINIT Code, 2020 www.abinit.org accessed 20 February 2020. 22. Sterne, P.A., Keiser, J.H., First-principles calculations of positron lifetimes in solids. Phys. Rev. B, 43, 1991, 13892. 23. Li, Y., Fan, W., Sun, H., Cheng, X., Li, P., Zhao, X., First principles study of the electronic, optical, and lattice dynamics of LiInSe2 polymorph. J. Appl. Phys., 106, 2009, 033704. 24. Studenyak, I., Kranjcec, M., Kurik, M., Urbach rule in solid state physics. Int. J. Optic. Appl., 4, 2014, 76. 25. Gody, G.D., Urbach edge of crystalline and amorphous silicon: a personal review. J. Non-Cryst. Solids, 141, 1992, 3. 26. Isaenko, L., Yelisseyev, A., Lobanov, S., LiInSe2: a biaxial ternary chalcogenide crystal for nonlinear optical applications in the mid-IR. J. Appl. Phys., 91, 2002, 9475. 27. Yelisseyev, A., Lin, Z.S., Starikova, M., Isaenko, L., Lobanov, S., Optical transitions due to native defects in nonlinear optical crystals LiGaS2. J. Appl. Phys., 111, 2012, 113507. 28. Li, Y., Zhao, X., Cheng, X., Point defects and defect-induced optical response in ternary LiInSe2 crystals: first-principle insight. J. Phys. Chem. C, 119, 2015, 29123. 29. Isaenko, L.I., Yelisseyev, A.P., Recent studies of nonlinear chalcogenide crystals for the mid-IR Semicond. Sci. Technol., 31, 2016, 123001. 30. Aines, R.D., Rossman, G.R., Water in minerals? A peak in the infrared. J. Geophys. Res., 89, 1984, 4059. 31. Cui, Y., Bhattacharya, P., Buliga, V., Tupitsyn, E., Rowe, E., Wiggins, B., Johnstone, D., Stowe, A., Burger, A., Defects in 6LiInSe2 neutron detector investigated by photo-induced current transient spectroscopy and photoluminescence. Appl. Phys. Lett., 103, 2013, 092104. 32. Song, K.S., Williams, R.T., Self-trapped Excitons. 1993, Springer, Berlin, 410. 33. de la Cruz, R.M., Pareja, R., Segurat, A., Chevy, A., Positron lifetime experiments in indium selenide. J. Phys. C Solid State Phys., 21, 1988, 4401. 34. Siegel, R.W., Positron annihilation spectroscopy. Annu. Rev. Mater. Sci., 10, 1980, 393. 35. van Vechten, J.A., Ternary and multinary compounds. Proceedings of the 7th International Conference, 1986, Materials Research Society, Pittsburgh, 423.