Инд. авторы: Ovdina E.A., Strakhovenko V.D., Solotchina E.P.
Заглавие: Authigenic carbonates in the water–biota–bottom sediments’ system of small lakes (south of western siberia)
Библ. ссылка: Ovdina E.A., Strakhovenko V.D., Solotchina E.P. Authigenic carbonates in the water–biota–bottom sediments’ system of small lakes (south of western siberia) // Minerals. - 2020. - Vol.10. - Iss. 6. - P.1-18. - EISSN 2075-163X.
Внешние системы: DOI: 10.3390/min10060552; РИНЦ: 45339111;
Реферат: eng: We studied 46 small, drainless lakes in various landscape types: The sub-taiga (Vasyugan plain), forest–steppe (Baraba lowland), and steppe and subzone of ribbon forests (Kulunda plain). Sampling of lake components (sediments, water, and biota) was performed. The materials were analyzed via a combination of modern analytical methods (atomic absorption spectroscopy, X-ray fluorescence, scanning electron microscopy and X-ray diffractometry). It was found that in the south of Western Siberia, lakes with a bicarbonate-sodium water composition are widespread against the background of general landscape zoning. This composition contributes to the abundant growth of biota in the lakes, which leads to the processes of authigenic carbonate formation from calcite– dolomite series and aragonite on geochemical barriers, i.e., drifting biota–water, submerged biota– water, and water–bottom sediments against a background of terrigenous demolition and organic matter accumulation. The article shows the differences in the composition and structure of low-temperature carbonate minerals formed on various geochemical barriers. It was found that low-magnesium calcite and aragonite are the most common authigenic carbonates in small lakes in the south of Western Siberia and are formed on all three geochemical barriers in lakes. High-magnesium calcites and Ca-excess dolomites are formed only at the water–bottom sediment barrier in lakes with HCO3–Na and Cl–HCO3–Na water composition at pH > 9 and with a total dissolved solids > 3 g·L−1 (in some lakes of HCO3-Na composition with a TDS < 3 g·L−1 and pH > 9).
Ключевые слова: western Siberia; small lakes; aragonite; Calcite-dolomite carbonates; authigenic minerals;
Издано: 2020
Физ. характеристика: с.1-18
Цитирование: 1. Bejrom, S.; Vasil'ev I.; Gadzhiev I. Natural Resources of the Novosibirsk Region; Nauka: Novosibirsk, Russia, 1986; p. 215. (In Russian) 2. Shtin, S. Lake Sapropels and the Basics of Their Integrated Development; MISIS National University of Science and Technology "MISIS": Moscow, Russia, 2005; p. 373 (In Russian) 3. Strakhovenko, V.D.; Taran, O.P.; Ermolaeva, N.I. Geochemical characteristics of the sapropel sediments of small lakes in the Ob'-Irtysh interfluve. Russ. Geol. Geophys. 2014, 55, 1160–1169. doi: 10.1016/j.rgg.2014.09.002. 4. Solotchina, E.P.; Sklyarov, E.V.; Strakhovenko, V.D.; Solotchin, P.A.; Sklyarova, O.A. Mineralogy and crystal chemistry of carbonates in modern sediments of shallow lakes of Olkhon area (Baikal region). Dokl. Earth Sci. 2015, 461, 394–400. doi:10.1134/S1028334X15040157. 5. Solotchina, E.P.; Kuzmin, M.I.; Solotchin, P.A.; Maltsev, A.E.; Leonova, G.A.; Danilenko, I.V. Authigenic carbonates from Holocene sediments of Lake Itkul (south of West Siberia) as indicators of climate changes. Dokl. Earth Sci. 2019, 487, 745–750. doi:10.1134/S1028334X19070079 6. Zhdanova, A.N.; Solotchina, E.P.; Krivonogov, S.K.; Solotchin, P.A. Mineral composition of the sediments of Lake Malye Chany as an indicator of Holocene climate changes (southern West Siberia). Russ. Geol. Geophys. 2019, 60, 1163–1174. doi:10.15372/RGG2019117 7. Borzenko, S.V.; Shvartsev, S.L. Chemical composition of salt lakes in East Transbaikalia (Russia). J. Appl. Geochem. 2019, 103, 72–84. doi: 10.1016/j.apgeochem.2019.02.014 8. Last, W.M.; Ginn, F.M. Saline systems of the Great Plains of western Canada: An overview of the limnogeology and paleolimnology. Saline Syst. 2005, 1, 1–38. doi: 10.1186/1746-1448-1-10 9. Hammer, U.T. Saline Lake Ecosystems of the World; Dr. W. Junk Publishers: Dordrecht, Netherlands, 1986; p. 616. 10. Stankevica, K.; Vincevica-Gaile, Z.; Klavins, M.; Kalnina, L.; Stivrins, N.; Grudzinska, I.; Kaup, E. Accumulation of metals and changes in composition of freshwater lake organic sediments during the Holocene. Chem. Geol. 2020, 539, 119502. doi: 10.1016/j.chemgeo.2020.119502 11. Strakhov, N. On the classification of sediments of modern seas and lakes of low mineralization. Izvestiya USSR AS, 1953, 3, 59–65. (In Russian) 12. Vernadskii, V. Geochemistry and the Biosphere; Synergetic Press: Santa Fe, NM, USA, 2007; p.480. 13. Leeder, M. Sedimentology: Process and Products; George Allen & Unwin: London, UK, 1982; p. 344 14. Berner, R.A.; Westrich, J.T.; Graber, R.; Smith, J.; Martens, C.S. Inhibition of aragonite precipitation from supersaturated seawater; a laboratory and field study. Am. J. Sci. 1978, 278, 816–837. 15. Kuznetsov, V. Petrography and origin of dolomite in carbonate deposits in various paleoclimates. Carbonates evaporites 1999, 14, 125–137. 16. Kholodov, V. Geochemistry of the Sedimentary Process; Publishing house GEOSGEOS: Moscow, Russia, 2006, p. 608 (In Russian). 17. Wittkop, C.A.; Teranes, J.L.; Dean, W.E.; Guilderson, T.P. A lacustrine carbonate record of holocene seasonality and climate. Geology 2009, 37, 695–698. doi:10.1130/G30056A.1. 18. Solotchina, E.P.; Sklyarov, E.V.; Solotchin, P.A.; Vologina, E.G.; Stolpovskaya, V.N.; Sklyarova, O.A.; Ukhova, N.N. Reconstruction of the Holocene climate based on a carbonate sedimentary record from shallow saline Lake Verkhnee Beloe (western Transbaikalia). Russ. Geol. Geophys. 2012, 53, 1351–1365. doi:10.1016/j.rgg.2012.10.008. 19. Last, F.M.; Last, W.M.; Halden, N.M. Modern and late Holocene dolomite formation: Manito Lake, Saskatchewan, Canada. Sediment. Geol. 2012, 281, 222–237. doi:10.1016/j.sedgeo.2012.09.012. 20. Lee, C. Controls on organic carbon preservation: the use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochim. Cosmochim. Acta 1992, 56, 3323–3335. 21. Frey, K.E.; McClelland, J.W. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol. Process. 2009, 23, 169–182. doi:10.1002/hyp.7196. 22. Sklyarov, E.V.; Solotchina, E.P.; Vologina, E.G.; Izokh, O.P.; Kulagina, N.V.; Orlova, L.A.; Sklyarova, O.A.; Solotchin, P.A.; Stolpovskaya, V.N.; Ukhova, N.N. Holocene climate history of the Western Baikal region: Carbonate sedimentary record of Kholbo-Nur Lake. Dokl. Earth Sci. 2010, 431, 490–496. doi:10.1134/S1028334X10040173. 23. Audry, S.; Pokrovsky, O.S.; Shirokova, L.S.; Kirpotin, S.N.; Dupré, B. Organic matter mineralization and trace element post-depositional redistribution in Western Siberia thermokarst lake sediments. Biogeosciences 2011, 8, 3341–3358. doi:10.5194/bg-8-3341-2011. 24. Gas’kova, O.L.; Strakhovenko, V.D.; Ovdina, E.A. Composition of brines and mineral zoning of the bottom sediments of soda lakes in the Kulunda steppe (West Siberia). Russ. Geol. Geophys. 2017, 58, 1199–1210. doi:10.1016/j.rgg.2016.09.034. 25. Mandal, S.K.; Ray, R.; González, A.G.; Mavromatis, V.; Pokrovsky, O.S.; Jana, T.K. State of rare earth elements in the sediment and their bioaccumulation by mangroves: A case study in pristine islands of Indian Sundarban. Environ. Sci. Pollut. Res. 2019, 26, 9146–9160. doi:10.1007/s11356-019-04222-1. 26. Solotchina, E.P.; Sklyarov, E.V.; Vologina, E.G.; Solotchin, P.A.; Stolpovskaya, V.N.; Sklyarova, O.A.; Izokh, O.P.; Ukhova, N.N. Climatic signals in the holocene carbonate sedimentary record of Namshi-Nur lake, West Baikal Region. Dokl. Earth Sci. 2011, 436, 295–300. doi: 10.1134/S1028334X11020267 27. Strakhovenko, V.D.; Solotchina, E.P.; Vosel', Y.S.; Solotchin, P.A. Geochemical factors for endogenic mineral formation in the bottom sediments of the Tazheran lakes (Baikal area). Russ. Geol. Geophys. 2015, 56, 1437–1450. doi: 10.1016/j.rgg.2015.09.006. 28. Ovchinnikov, A. Hydrogeochemistry; Nedra: Moscow, Russia, 1970; p. 200 (In Russian). 29. Klochko, A.A.; Romanovskaya, M.A. National Atlas of Russia Vol. 2. Nature and the Environment; Federal State Unitary Enterprise GOSGISCENTER: Moscow, Russia, 2004, p. 495 (In Russian). 30. Korde, N. Biostratigraphy and Typology of Russian Sapropels; Publishing house of the USSR Academy of Sciences: Moscow, Russia, 1969; p. 219 (In Russian). 31. Strakhovenko, V.D.; Roslyakov, N.A.; Syso, A.I.; Ermolaeva, N.I.; Zarubina, E.Y.; Taran, O.P.; Puzanov, A.V. Hydrochemical characteristic of sapropels in Novosibirsk oblast. Water Resour. 2016, 43, 539–545. doi:10.1134/S0097807816030167. 32. Solotchina, E.P.; Solotchin, P.A. Composition and structure of low-temperature natural carbonates of the calcite-dolomite series. J. Struct. Chem. 2014, 55, 779–785. doi:10.1134/S0022476614040295. 33. Yermolaeva, N.I.; Zarubina, E.Y.; Romanov, R.E.; Leonova, G.A.; Puzanov, A.V. Hydrobiological conditions of sapropel formation in lakes in the south of Western Siberia. Water Resour. 2016, 43, 129–140. doi:10.1134/S0097807816010073. 34. Taran, O.P.; Boltenkov, V.V.; Ermolaeva, N.I.; Zarubina, E.Y.; Delii, I.V.; Romanov, R.E.; Strakhovenko, V.D. Relations between the chemical composition of organic matter in lacustrine ecosystems and the genesis of their sapropel. Geochem. Int. 2018, 56, 256–265. doi:10.1134/S0016702918030096. 35. Strakhovenko, V.D.; Ovdina, E.A.; Malov, G.I.; Yermolaeva, N.I.; Zarubina, E.Y.; Taran, O.P.; Boltenkov, V.V. Genesis of organomineral deposits in lakes of the central part of the Baraba Lowland (south of West Siberia). Russ. Geol. Geophys 2019, 60, 978–989. doi:10.15372/RGG2019093 36. Gavshin, V.M.; Scherbov, B.L.; Melgunov, M.S.; Strakhovenko, V.D.; Bobrov, V.A.; Tsibulchik, V.M.137Cs and210 Pb in lake sediments of the Steppe Altai as indicators of the dynamics of the anthropogenic changes in the geochemical background during the XX century. Russ. Geol. Geophys. 1999, 40, 1331–1341 (In Russian). 37. Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. 38. Zavarzin, G.A. Epicontinental soda waters as inferred relict biotopes of terrestrial biota formation. Microbiology 1993, 62, 789–800 (In Russian). 39. Newsome, L.; Morris, K.; Lloyd, J.R. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem. Geol. 2014, 363, 164–184. doi: 10.1016/j.chemgeo.2013.10.034 40. Shirokova, L.S.; Mavromatis, V.; Bundeleva, I.; Pokrovsky, O.S.; Benezeth, P.; Pearce, C.; Oelkers, E.H. Using Mg isotopes to trace cyanobacterially mediated magnesium carbonate precipitation in alkaline lakes. Aquat. Geochem. 2013, 19, 1–24. doi: 10.1007/s10498-012-9174-3 41. Sanz-Montero, M.E.; Rodriguez-Aranda, J.P. Silicate bioweathering and biomineralization in lacustrine microbialites: ancient analogues from the Miocene Duero Basin, Spain. Geol. Mag. 2009, 146, 527–539. doi: 10.1017/S0016756808005906 42. Samylina, O.S.; Zaytseva, L.V.; Sinetova, M.A. Participation of algal-bacterial community in the formation of modern stromatolites in Cock Soda Lake, Altai Region. Paleontol. J. 2016, 50, 635–645. doi: 10.1134/S0031030116060137 43. Holmer, M.; Storkholm, P. Sulphate reduction and sulphur cycling in lake sediments: A review. Freshw. Biol. 2001, 46, 431–451. doi: 10.1046/j.1365-2427.2001.00687.x 44. Deelman, J.C. Low-Temperature Formation of Dolomite and Magnesite; Compact Disc Publications: Eindhoven, Netherlands, 2011; p. 512. 45. Pokrovsky, O.S. Laboratory synthesis of calcium and magnesium carbonates: factors controlling the formation of magnesian calcites in natural waters. Lithol. Miner. Resour. 1996, 5, 531–540. (In Russian) 46. Sapozhnikov, Ph.V.; Kalinina, O.Yu.; Nikitin, M.A.; Samylina, O.S. Cenoses of phototrophic algae of ultrasaline lakes in the Kulunda steppe (Altai krai, Russian Federation). Oceanology 2016, 56, 95–106. doi:10.1134/S0001437016010173 47. Gas’kova, O.L.; Solotchina, E.P.; Sklyarova, O.A. Reconstruction of solution chemistry evolution based on the sedimentary record of salt lakes in the Olkhon region. Russ. Geol. Geophys 2011 52, 548–554, http://dx.doi.org/10.1016/j.rgg.2011.04.007.