Цитирование: | 1. Clesi, V. et al. Effect of H2O on metal–silicate partitioning of Ni, Co, V, Cr, Mn and Fe: implications for the oxidation state of the Earth and Mars. Geochim. Cosmochim. Acta 192, 97–121, 10.1016/j.gca.2016.07.029 (2016). DOI: 10.1016/j.gca.2016.07.029
2. Füri, E., Deloule, E., Gurenko, A. & Marty, B. New evidence for chondritic lunar water from combined D/H and noble gas analyses of single Apollo 17 volcanic glasses. Icarus 229, 109–120, 10.1016/j.icarus.2013.10.029 (2014). DOI: 10.1016/j.icarus.2013.10.029
3. Hirschmann, M. M., Withers, A. C., Ardia, P. & Foley, N. T. Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345-348, 38–48, 10.1016/j.epsl.2012.06.031 (2012). DOI: 10.1016/j.epsl.2012.06.031
4. Peslier, A. H., Schönbächler, M., Busemann, H. & Karato, S.-I. Water in the Earth's interior: distribution and origin. Space Sci. Rev. 210, 1–68 (2017). DOI: 10.1007/s11214-017-0417-x
5. Jacobsen, S. D. Effect of water on the equation of state of nominally anhydrous minerals. Rev. Mineral. Geochem. 62, 321–342, 10.2138/rmg.2006.62.14 (2006). DOI: 10.2138/rmg.2006.62.14
6. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313-314, 56–66, 10.1016/j.epsl.2011.10.040 (2012). DOI: 10.1016/j.epsl.2011.10.040
7. Férot, A. & Bolfan-Casanova, N. Water storage capacity in olivine and pyroxene to 14 GPa: implications for the water content of the Earth's upper mantle and nature of seismic discontinuities. Earth Planet. Sci. Lett. 349-350, 218–230, 10.1016/j.epsl.2012.06.022 (2012). DOI: 10.1016/j.epsl.2012.06.022
8. Smyth, J. R. Hydrogen in high pressure silicate and oxide mineral structures. Rev. Mineral. Geochem. 62, 85–115, 10.2138/rmg.2006.62.5 (2006). DOI: 10.2138/rmg.2006.62.5
9. Bell, D. R. & Rossman, G. R. Water in Earth's mantle: the role of nominally anhydrous minerals. Science 255, 1391 (1992). DOI: 10.1126/science.255.5050.1391
10. Demouchy, S. & Bolfan-Casanova, N. Distribution and transport of hydrogen in the lithospheric mantle: a review. Lithos 240-243, 402–425, 10.1016/j.lithos.2015.11.012 (2016). DOI: 10.1016/j.lithos.2015.11.012
11. Pearson, D. G. et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221, 10.1038/nature13080 (2014). DOI: 10.1038/nature13080
12. Aulbach, S. et al. Evidence for a dominantly reducing Archaean ambient mantle from two redox proxies, and low oxygen fugacity of deeply subducted oceanic crust. Sci. Rep. 9, 20190, 10.1038/s41598-019-55743-1 (2019). DOI: 10.1038/s41598-019-55743-1
13. Goncharov, A. G., Ionov, D. A., Doucet, L. S. & Pokhilenko, L. N. Thermal state, oxygen fugacity and COH fluid speciation in cratonic lithospheric mantle: new data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet. Sci. Lett. 357-358, 99–110, 10.1016/j.epsl.2012.09.016 (2012). DOI: 10.1016/j.epsl.2012.09.016
14. Woodland, A. B. & Koch, M. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet. Sci. Lett. 214, 295–310, 10.1016/S0012-821X(03)00379-0 (2003). DOI: 10.1016/S0012-821X(03)00379-0
15. McCammon, C. A. & Frost, D. J. The effect of oxygen fugacity on the olivine to wadsleyite transformation: implications for remote sensing of mantle redox state at the 410 km seismic discontinuity. Am. Mineral. 94, 872–882, 10.2138/am.2009.3094 (2009). DOI: 10.2138/am.2009.3094
16. Yang, X. Effect of oxygen fugacity on OH dissolution in olivine under peridotite-saturated conditions: an experimental study at 1.5–7 GPa and 1100–1300 °C. Geochim. Cosmochim. Acta 173, 319–336, 10.1016/j.gca.2015.11.007 (2016). DOI: 10.1016/j.gca.2015.11.007
17. Yang, X., Keppler, H. & Li, Y. Molecular hydrogen in mantle minerals. Geochem. Perspect. Lett., 160–168, https://doi.org/10.7185/geochemlet.1616 (2016).
18. Radu, I. B., Harris, C., Moine, B. N., Costin, G. & Cottin, J. Y. Subduction relics in the subcontinental lithospheric mantle, evidence from ∂18O variations in eclogite xenoliths from the Kaapvaal craton. Contrib. Miner. Petrol. 174, https://doi.org/10.1007/s00410-019-1552-z (2019).
19. Gong, B., Zheng, Y.-F. & Chen, R.-X. An online method combining a thermal conversion elemental analyzer with isotope ratio mass spectrometry for the determination of hydrogen isotope composition and water concentration in geological samples. Rapid Commun. Mass Spectrom. 21, 1386–1392, 10.1002/rcm.2973 (2007). DOI: 10.1002/rcm.2973
20. Sharp, Z. D., Atudorei, V. & Durakiewicz, T. A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chem. Geol. 178, 197–210, 10.1016/S0009-2541(01)00262-5 (2001). DOI: 10.1016/S0009-2541(01)00262-5
21. Chen, R.-X., Zheng, Y.-F. & Gong, B. Mineral hydrogen isotopes and water contents in ultrahigh-pressure metabasite and metagranite: constraints on fluid flow during continental subduction-zone metamorphism. Chem. Geol. 281, 103–124, 10.1016/j.chemgeo.2010.12.002 (2011). DOI: 10.1016/j.chemgeo.2010.12.002
22. Katayama, I., Nakashima, S. & Yurimoto, H. Water content in natural eclogite and implication for water transport into the deep upper mantle. Lithos 86, 245–259, 10.1016/j.lithos.2005.06.006 (2006). DOI: 10.1016/j.lithos.2005.06.006
23. Smyth, J. R., Bell, D. R. & Rossman, G. R. Incorporation of hydroxyl in upper-mantle clinopyroxenes. Nature 351, 732–735, 10.1038/351732a0 (1991). DOI: 10.1038/351732a0
24. Doucet, L. S. et al. High water contents in the Siberian cratonic mantle linked to metasomatism: an FTIR study of Udachnaya peridotite xenoliths. Geochim. Cosmochim. Acta 137, 159–187, 10.1016/j.gca.2014.04.011 (2014). DOI: 10.1016/j.gca.2014.04.011
25. Peslier, A. H., Schönbächler, M., Busemann, H. & Karato, S.-I. Water in the Earth's interior: distribution and origin. Space Sci. Rev. 212, 743–810, 10.1007/s11214-017-0387-z (2017). DOI: 10.1007/s11214-017-0387-z
26. Allègre, C. J. & Turcotte, D. L. Implications of a two-component marble-cake mantle. Nature 323, 123, 10.1038/323123a0 (1986). DOI: 10.1038/323123a0
27. Newman, S., Stolper, E. M. & Epstein, S. Measurement of water in rhyolitic glasses; calibration of an infrared spectroscopic technique. Am. Mineral. 71, 1527–1541 (1986).
28. Kovács, I. et al. Water concentrations and hydrogen isotope compositions of alkaline basalt-hosted clinopyroxene megacrysts and amphibole clinopyroxenites: the role of structural hydroxyl groups and molecular water. Contrib. Miner. Petrol. 171, 10.1007/s00410-016-1241-0 (2016).
29. Su, W., You, Z., Cong, B., Ye, K. & Zhong, Z. Cluster of water molecules in garnet from ultrahigh-pressure eclogite. Geology 30, 611–614, https://doi.org/10.1130/0091-7613(2002)030<0611:cowmig>2.0.co;2 (2002).
30. Xu, Z., Zheng, Y.-F., Zhao, Z.-F. & Gong, B. The hydrous properties of subcontinental lithospheric mantle: constraints from water content and hydrogen isotope composition of phenocrysts from Cenozoic continental basalt in North China. Geochim. Cosmochim. Acta 143, 285–302, 10.1016/j.gca.2013.12.025 (2014). DOI: 10.1016/j.gca.2013.12.025
31. Gong, B., Zheng, Y.-F. & Chen, R.-X. TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys. Chem. Miner. 34, 687–698, 10.1007/s00269-007-0184-4 (2007). DOI: 10.1007/s00269-007-0184-4
32. Bartholomew, R. F., Butler, B. L., Hoover, H. L. & Wu, C. K. Infrared spectra of a water-containing glass. J. Am. Ceram. Soc. 63, 481–485, 10.1111/j.1151-2916.1980.tb10748.x (1980). DOI: 10.1111/j.1151-2916.1980.tb10748.x
33. Shelby, J. E. Protonic species in vitreous silica. J. Non-Cryst. Solids 179, 138–147 (1994). DOI: 10.1016/0022-3093(94)90691-2
34. Koch-Müller, M., Abs-Wurmbach, I., Rhede, D., Kahlenberg, V. & Matsyuk, S. Dehydration experiments on natural omphacites: qualitative and quantitative characterization by various spectroscopic methods. Phys. Chem. Miner. 34, 663–678, 10.1007/s00269-007-0181-7 (2007). DOI: 10.1007/s00269-007-0181-7
35. Ishiyama, D., Shinoda, K., Shimizu, T., Matsubaya, O. & Aikawa, N. Structural states and isotopic compositions of water in hydrothermal quartz, Koryu Deposit, Japan. Econ. Geol. 94, 1347–1351, 10.2113/gsecongeo.94.8.1347 (1999). DOI: 10.2113/gsecongeo.94.8.1347
36. Vennemann, T. W. & O'Neil, J. R. Hydrogen isotope exchange reactions between hydrous minerals and molecular hydrogen: I. a new approach for the determination of hydrogen isotope fractionation at moderate temperatures. Geochim. Cosmochim. Acta 60, 2437–2451, 10.1016/0016-7037(96)00103-2 (1996). DOI: 10.1016/0016-7037(96)00103-2
37. Sheng, Y.-M. & Gong, B. Hydrous species in eclogitic omphacite: implication for metamorphic dehydration during exhumation. J. Asian Earth Sci. 145, 123–129, 10.1016/j.jseaes.2016.12.020 (2017). DOI: 10.1016/j.jseaes.2016.12.020
38. Bali, E., Audétat, A. & Keppler, H. Water and hydrogen are immiscible in Earth's mantle. Nature 495, 220–222, 10.1038/nature11908 (2013). DOI: 10.1038/nature11908
39. Peslier, A. H., Luhr, J. F. & Post, J. Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth Planet. Sci. Lett. 201, 69–86, 10.1016/S0012-821X(02)00663-5 (2002). DOI: 10.1016/S0012-821X(02)00663-5
40. Skogby, H. O. H. incorporation in synthetic clinopyroxene. Am. Mineral. 79, 240–249 (1994).
41. Demouchy, S. Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth's mantle. Earth Planet. Sci. Lett. 295, 305–313, 10.1016/j.epsl.2010.04.019 (2010). DOI: 10.1016/j.epsl.2010.04.019
42. Hercule, S. & Ingrin, J. Hydrogen in diopside; diffusion, kinetics of extraction-incorporation, and solubility. Am. Mineral. 84, 1577–1587, 10.2138/am-1999-1011 (1999). DOI: 10.2138/am-1999-1011
43. Shang, L., Chou, I. M., Lu, W., Burruss, R. C. & Zhang, Y. Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523K by Raman spectroscopy and application of fused silica capillaries in studying redox reactions. Geochim. Cosmochim. Acta 73, 5435–5443, 10.1016/j.gca.2009.06.001 (2009). DOI: 10.1016/j.gca.2009.06.001
44. Lee, R. W. Diffusion of hydrogen in natural and synthetic fused quartz. J. Chem. Phys. 38, 448–455, 10.1063/1.1733679 (1963). DOI: 10.1063/1.1733679
45. Schmid, R. et al. Micro-XANES determination of ferric iron and its application in thermobarometry. Lithos 70, 381–392, 10.1016/S0024-4937(03)00107-5 (2003). DOI: 10.1016/S0024-4937(03)00107-5
46. Gaillard, F., Schmidt, B., Mackwell, S. & McCammon, C. Rate of hydrogen–iron redox exchange in silicate melts and glasses. Geochim. Cosmochim. Acta 67, 2427–2441, 10.1016/S0016-7037(02)01407-2 (2003). DOI: 10.1016/S0016-7037(02)01407-2
47. Clog, M., Aubaud, C., Cartigny, P. & Dosso, L. The hydrogen isotopic composition and water content of southern Pacific MORB: a reassessment of the D/H ratio of the depleted mantle reservoir. Earth Planet. Sci. Lett. 381, 156–165, 10.1016/j.epsl.2013.08.043 (2013). DOI: 10.1016/j.epsl.2013.08.043
48. Hallis, L. J. et al. Evidence for primordial water in Earth's deep mantle. Science 350, 795 (2015). DOI: 10.1126/science.aac4834
49. Satake, H. & Matsuda, J. i. Strontium and hydrogen isotope geochemistry of fresh and metabasalt dredged from the Mid-Atlantic Ridge. Contrib. Mineral. Petrol. 70, 153–157, 10.1007/BF00374444 (1979). DOI: 10.1007/BF00374444
50. Sheppard, S. M. F. & Epstein, S. D/H and 18O/16O ratios of minerals of possible mantle or lower crustal origin. Earth Planet. Sci. Lett. 9, 232–239 (1970). DOI: 10.1016/0012-821X(70)90033-6
51. Wenner, D. B. & Taylor, H. P. D/H and O18/O16 studies of serpentinization of ultramaflc rocks. Geochim. Cosmochim. Acta 38, 1255–1286, 10.1016/0016-7037(74)90120-3 (1974). DOI: 10.1016/0016-7037(74)90120-3
52. Graham, C. M., Harmon, R. S. & Sheppard, S. M. F. Experimental hydrogen isotope studies: hydrogen isotope exchange between amphibole and water. Am. Miner. 69, 128–138 (1984).
53. Suzuoki, T. & Epstein, S. Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim. Cosmochim. Acta 40, 1229–1240, 10.1016/0016-7037(76)90158-7 (1976). DOI: 10.1016/0016-7037(76)90158-7
54. Shaw, A. M., Hauri, E. H., Fischer, T. P., Hilton, D. R. & Kelley, K. A. Hydrogen isotopes in Mariana arc melt inclusions: implications for subduction dehydration and the deep-Earth water cycle. Earth Planet. Sci. Lett. 275, 138–145, 10.1016/j.epsl.2008.08.015 (2008). DOI: 10.1016/j.epsl.2008.08.015
55. Ito, E., Harris, D. M. & Anderson, A. T. J. Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim. Cosmochim. Acta 47, 1613–1624 (1983). DOI: 10.1016/0016-7037(83)90188-6
56. Peacock, S. M. Fluid processes in subduction zones. Science 248, 329–337 (1990). DOI: 10.1126/science.248.4953.329
57. Richet, P., Bottinga, Y. & Javoy, M. A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Annu. Rev. Earth Planet. Sci. 5, 65–110, 10.1146/annurev.ea.05.050177.000433 (1977). DOI: 10.1146/annurev.ea.05.050177.000433
58. Peslier, A. H., Woodland, A. B. & Wolff, J. A. Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa. Geochim. Cosmochim. Acta 72, 2711–2722, 10.1016/j.gca.2008.03.019 (2008). DOI: 10.1016/j.gca.2008.03.019
59. Sharp, Z. D., McCubbin, F. M. & Shearer, C. K. A hydrogen-based oxidation mechanism relevant to planetary formation. Earth Planet. Sci. Lett. 380, 88–97, 10.1016/j.epsl.2013.08.015 (2013). DOI: 10.1016/j.epsl.2013.08.015
60. Kuroda, Y., Suzuoki, T., Matsuo, S. & Aoki, K. I. D/H ratios of the coexisting phlogopite and richterite from mica nodules and a peridotite in South African kimberlites. Contrib. Mineral. Petrol. 52, 315–318, 10.1007/BF00401460 (1975). DOI: 10.1007/BF00401460
61. Mysen, B. Hydrogen isotope fractionation and redox-controlled solution mechanisms in silicate-COH melt+fluid systems. J. Geophys. Res.: Solid Earth 120, 7440–7459, 10.1002/2015JB011954 (2015). DOI: 10.1002/2015JB011954
62. Qi, H., Coplen, T. B., Olack, G. A. & Vennemann, T. W. Caution on the use of NBS 30 biotite for hydrogen-isotope measurements with on-line high-temperature conversion systems. Rapid Commun. Mass Spectrom. 28, 1987–1994, 10.1002/rcm.6983 (2014). DOI: 10.1002/rcm.6983
63. Coplen, T. B. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Geothermics 24, 707–712, 10.1016/0375-6505(95)00024-0 (1995). DOI: 10.1016/0375-6505(95)00024-0
64. Bigeleisen, J., Perlman, M. L. & Prosser, H. C. Conversion of hydrogenic materials to hydrogen for isotopic analysis. Anal. Chem. 24, 1356–1357 (1952). DOI: 10.1021/ac60068a025
65. Kovács, I. N. et al. Quantitative absorbance spectroscopy with unpolarized light: Part II. Experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra. Am. Mineral. 93, 765–778, 10.2138/am.2008.2656 (2008). DOI: 10.2138/am.2008.2656
66. Xia, Q.-K., Dallai, L. & Deloule, E. Oxygen and hydrogen isotope heterogeneity of clinopyroxene megacrysts from Nushan Volcano, SE China. Chem. Geol. 209, 137–151, 10.1016/j.chemgeo.2004.04.028 (2004). DOI: 10.1016/j.chemgeo.2004.04.028
67. Ravna, K. The garnet–clinopyroxene Fe2+–Mg geothermometer: an updated calibration. J. Metamorph. Geol. 18, 211–219, 10.1046/j.1525-1314.2000.00247.x (2000). DOI: 10.1046/j.1525-1314.2000.00247.x
68. Pollack, H. N. & Chapman, D. S. Mantle heat flow. Earth Planet. Sci. Lett. 34, 174–184, 10.1016/0012-821X(77)90002-4 (1977). DOI: 10.1016/0012-821X(77)90002-4
69. Griffin, W., O'Reilly, S. Y., Natapov, L. M. & Ryan, C. G. The evolution of lithospheric mantle beneath the Kalahari Craton and its margins. Lithos 71, 215–241, 10.1016/j.lithos.2003.07.006 (2003). DOI: 10.1016/j.lithos.2003.07.006
70. Ionov, D. A., Doucet, L. S., Xu, Y., Golovin, A. V. & Oleinikov, O. B. Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite. Geochim. Cosmochim. Acta 224, 132–153, 10.1016/j.gca.2017.12.028 (2018). DOI: 10.1016/j.gca.2017.12.028
|