Инд. авторы: Palesskiy S.V., Nikolaeva I.V.
Заглавие: Calibration Standard Samples for Multielement Analysis of Silicate Rocks Using Inductively Coupled Plasma Mass Spectrometry with Laser Ablation
Библ. ссылка: Palesskiy S.V., Nikolaeva I.V. Calibration Standard Samples for Multielement Analysis of Silicate Rocks Using Inductively Coupled Plasma Mass Spectrometry with Laser Ablation // Inorganic Materials. - 2020. - Vol.56. - Iss. 14. - P.1398-1408. - ISSN 0020-1685. - EISSN 1608-3172.
Внешние системы: DOI: 10.1134/S0020168520140101; РИНЦ: 45090218; WoS: 000603563700008;
Реферат: eng: A comparison of different standard samples-artificial glass SRM-612 (Standard Reference Material) and standard samples of natural composition SG-1A, SG-3, ST-1A, and SGD-1A-used for external calibration in the elemental analysis of silicate rocks in the form of fused glasses by inductively coupled plasma mass spectrometry and laser ablation (LA-ICP-MS) is carried out with a goal of selecting the most suitable samples for plotting the calibration dependence upon determination of the major and trace elements when using LA-ICP-MS for routine analysis. The results showed that the error of determination for both major and trace elements is lower (compared to SRM-612) when external calibration is carried out using the reference materials of natural composition with Si and Fe contents close to those in the analyzed samples. The use of internal standards in both cases decreases the systematic error attributed to the drift of LA parameters and different ablation yields. The correctness of the determination of 28 elements is proved in comparison of the results of the analysis of four standard samples with the reference values. The obtained results are used to select calibration standards for LA-ICP-MS analysis of the samples of unknown composition. The results of analysis of six samples of unknown composition match within the error limit the results of X-ray fluorescence analysis (major elements) and ICP-MS (trace elements in solutions). Refining of the content of trace elements in the previously certified reference materials allows them to be used for calibration in routine analysis of geological rocks. The developed LA-ICP-MS technique is a rapid method for determination of a wide range of elements, in particular, rare earth elements, in silicate rocks and can be used for routine analysis without additional sample preparation after X-ray fluorescence analysis.
Ключевые слова: REE; FUSION; FRACTIONATION; GLASSES; GEOLOGICAL SAMPLES; RARE-EARTH-ELEMENTS; TRACE-ELEMENT ANALYSIS; external calibration; calibration standards; reference materials; laser ablation; inductively coupled plasma mass spectrometry; ICP-MS; XRF;
Издано: 2020
Физ. характеристика: с.1398-1408
Цитирование: 1. Yu, Z., Norman, M.D., and Robinson, P., Major and trace element analysis of silicate rocks by XRF and laser ablation ICP-MS using lithium borate fused glasses: matrix effects, instrument response and results for international reference materials, Geostand. Newsl., 2003, vol. 27, no. 1, pp. 67–89. 10.1111/j.1751-908X.2003.tb00713.x DOI: 10.1111/j.1751-908X.2003.tb00713.x 2. Gunther, D., Quadt, A., Wirz, R., et al., Elemental analyses using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) of geological samples fused with Li2B4O7 and calibrated without matrix-matched standards, Microchim. Acta, 2001, vol. 136, nos. 3–4, pp. 101–107. 10.1007/s006040170038 DOI: 10.1007/s006040170038 3. Odegard, M., Dundas, S.H., Flem, B., and Grimstvedt, A., Application of a double-focusing magnetic sector inductively coupled plasma mass spectrometer with laser ablation for the bulk analysis of rare earth elements in rocks fused with Li2B4O7, Fresenius J. Anal. Chem., 1998, vol. 362, no. 5, pp. 477–482. 10.1007/s002160051110 DOI: 10.1007/s002160051110 4. Robinson, Ph., Townsend, T., Yu, Z., and Münker, C., Determination of scandium, yttrium and rare earth elements in rocks by high resolution inductively coupled plasma-mass spectrometry, Geostand. Newsl., 1999, vol. 23, no. 1, pp. 31–46. 10.1111/j.1751-908X.1999.tb00557.x DOI: 10.1111/j.1751-908X.1999.tb00557.x 5. Willbold, M. and Jochum, K.P., Multi-element isotope dilution sector field ICP-MS: A precise technique for the analysis of geological materials and its application to geological reference materials, Geostand. Newsl., 2005, vol. 29, no. 1, pp. 63–82. 10.1111/j.1751-908X.2005.tb00656.x DOI: 10.1111/j.1751-908X.2005.tb00656.x 6. Laser-Ablation-ICPMs in the Earth Sciences: Principles and Applications, Quebec: Miner. Assoc. Can., 2001, vol. 29. 7. Sylvester, P.J. and Jackson, S.E., A brief history of laser ablation inductively coupled plasma mass-spectrometry (LA-ICP-MS), Elements, 2016, vol. 12, no. 5, pp. 307–310. 10.2113/gselements.12.5.307 DOI: 10.2113/gselements.12.5.307 8. Svetov, S.A., Stepanova, A.V., Chazhengina, S.Yu., et al., Precision (ICP-MS, LA-ICP-MS) analysis of rocks and minerals: methods and assessment of results accuracy on the example of early Cambrian mafic complexes, Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, 2015, no. 7, pp. 54–73. 10.17076/geo140 9. ver Hoeve, T.J., Scoates, J.S., Wall, C.J., et al., Evaluating downhole fractionation corrections in LA-ICP-MS U-Pb zircon geochronology, Chem. Geol., 2018, vol. 483, pp. 201–217. 10.1039/c8ja00321a DOI: 10.1039/c8ja00321a 10. Raith, A. and Hutton, R.C., Quantification methods using laser ablation ICP-MS. Part 1: Analysis of powders, Fresenius J. Anal. Chem., 1994, vol. 350, nos. 4–5, pp. 242–246. 10.1007/BF00322476 DOI: 10.1007/BF00322476 11. Eggins, S.M., Laser ablation ICP-MS analysis of geological materials prepared as lithium borate glasses, Geostand. Newsl., 2003, vol. 27, no. 2, pp. 147–162. 10.1111/j.1751-908X.2003.tb00642.x DOI: 10.1111/j.1751-908X.2003.tb00642.x 12. Becker, J.S. and Dietze, H.-J., Determination of trace elements in geological samples by ablation inductively coupled plasma mass spectrometry, Fresenius J. Anal. Chem., 1999, vol. 365, pp. 429–434. 10.1007/s002160051635 DOI: 10.1007/s002160051635 13. Orihashi, Y. and Hirata, T., Rapid quantitative analysis of Y and REE abundances in XRF glass bead for selected GSJ reference rock standards using Nd-YAG 266 nm UV laser ablation ICP-MS, Geochem. J., 2003, vol. 37, pp. 401–412. 10.2343/geochemj.37.401 DOI: 10.2343/geochemj.37.401 14. Jenner, F.E. and Arevalo, R.D., Major and trace element analysis of natural and experimental igneous systems using LA-ICP-MS, Elements, 2016, vol. 12, no. 5, pp. 311–316. 10.2113/gselements.12.5.311 DOI: 10.2113/gselements.12.5.311 15. Petrelli, M., Perugini, D., Poli, G., and Peccerillo, A., Graphite electrode lithium tetraborate fusion for trace element determination in bulk geological samples by laser ablation ICP-MS, Microchim. Acta, 2007, vol. 158, pp. 275–282. 10.1007/s00604-006-0731-6 DOI: 10.1007/s00604-006-0731-6 16. He, Z., Huang, F., Yu, X., et al., A flux-free fusion technique for rapid determination of major and trace elements in silicate rocks by LA-ICP-MS, Geostand. Geoanal. Res., 2016, vol. 40, no. 1, pp. 5–27. 10.1111/ggr.12240 DOI: 10.1111/ggr.12240 17. Kurosawa, M., Shima, K., Ishii, S., and Sasa, K., Trace element analysis of fused whole-rock glasses by laser ablation-ICP-MS and PIXE, Geostand. Newsl., 2006, vol. 30, no. 1, pp. 17–30. 10.1111/j.1751-908X.2006.tb00908.x DOI: 10.1111/j.1751-908X.2006.tb00908.x 18. Yong, S.L., Zhao, C.H., Ming, L., and Shan, G., Applications of LA-ICP-MS in the elemental analyses of geological samples, Chin. Sci. Bull., 2013, vol. 58, no. 32, pp. 3863–3878. 10.1007/s11434-013-5901-4 DOI: 10.1007/s11434-013-5901-4 19. Chernonozhkin, S.M. and Saprykin, A.I., Application of laser ablation for solid samples analysis by inductively coupled plasma, Mass-Spektrom., 2012, vol. 9, no. 3, pp. 157–166. 20. Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, Sylvester, P., Ed., Quebec: Miner. Assoc. Can., 2008, vol. 40, pp. 2008. 21. Weis, P., Beck, H.P., and Gunther, D., Characterizing ablation and aerosol generation during elemental fractionation on absorption modified lithium tetraborate glasses, Anal. Bioanal. Chem., 2005, vol. 381, pp. 212–224. 10.1007/s00216-004-2947-9 DOI: 10.1007/s00216-004-2947-9 22. Lin, J., Liu, Y., Yang, Y., and Hu, Z., Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios, Solid Earth Sci., 2016, vol. 1, no. 1, pp. 5–27. 10.1016/j.sesci.2016.04.002 DOI: 10.1016/j.sesci.2016.04.002 23. Li, C.-Y., Jiang, Y.-H., Zhay, Y., et al., Trace element analyses of fluid inclusions using laser ablation ICP-MS, Solid Earth Sci., 2018, vol. 3, no. 1, pp. 8–13. 10.1016/j.sesci.2017.12.001 DOI: 10.1016/j.sesci.2017.12.001 24. Jackson, S.E., Calibration strategies for elemental analysis by LA–ICP–MS, in Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, Sylvester, P., Ed., Quebec: Miner. Assoc. Can., 2008, vol. 40, pp. 169–188. 25. Nikolaeva, I.V., Palesskii, S.V., Koz’menko, O.A., and Anoshin, G.N., Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS), Geochem. Int., 2008, vol. 46, no. 10, pp. 1085–1091. 10.1134/S0016702908100066 DOI: 10.1134/S0016702908100066 26. Nikolaeva, I.V., Palesskiy, S.V., Chirko, O.S., and Chernonozhkin, S.M., Determination of major and trace elements by inductively coupled plasma mass-spectrometry in silicate rocks after fusion with LiBO2, Anal. Kontrol, 2012, vol. 16, no. 2, pp. 1–9. http://elar.urfu.ru/bitstream/10995/42542/1/aik_2012_ 02_134-142.pdf 27. Experimintal samples. http://www.igc.irk.ru/ru/content_page/148?start=0. Accessed November 8, 2018. 28. Mysovskaya, I.N., Smirnova, E.V., Lozhkin, V.I., and Pakhomova, N.N., New data on determination of rare and trace elements in geological standards using inductively coupled plasma mass spectrometry, Inorg. Mater., 2010, vol. 46, no. 15, pp. 1702–1709. DOI: 10.1134/S0020168510150185