Инд. авторы: Rezvukhina O.V, Korsakov A.V., Rezvukhin D.I., Mikhailenko D.S., Zamyatin D.A., Greshnyakov E.D., Shur V.Y.
Заглавие: Zircon from diamondiferous kyanite gneisses of the Kokchetav massif: Revealing growth stages using an integrated cathodoluminescence, Raman spectroscopy and electron microprobe approach
Библ. ссылка: Rezvukhina O.V, Korsakov A.V., Rezvukhin D.I., Mikhailenko D.S., Zamyatin D.A., Greshnyakov E.D., Shur V.Y. Zircon from diamondiferous kyanite gneisses of the Kokchetav massif: Revealing growth stages using an integrated cathodoluminescence, Raman spectroscopy and electron microprobe approach // Mineralogical Magazine. - 2020. - Vol.84. - Iss. 6. - P.949-958. - ISSN 0026-461X. - EISSN 1471-8022.
Внешние системы: DOI: 10.1180/mgm.2020.95; РИНЦ: 45008121; WoS: 000611934400016;
Реферат: eng: Zircon crystals from diamondiferous kyanite gneisses of the Barchi-Kol area (Kokchetav massif, Northern Kazakhstan) have been investigated by a combined application of cathodoluminescence (CL), Raman spectroscopy and electron probe microanalysis (EPMA). The zircon crystals exhibit up to four distinct domains characterised by significantly different CL signatures and parameters of the nu(3)(SiO4) (1008 cm(-1)) Raman band (i.e. full width at half maximum, position and intensity). Extremely metamict zircon cores (Domain I) host inclusions of low-pressure minerals (quartz and graphite) and the outer mantles (Domain III) are populated by ultrahigh-pressure relicts (diamond and coesite), whereas inner mantles (Domain II) and overgrowth rim zones (Domain IV) are inclusion free. Both the zircon cores and rims have very low Ti concentrations, implying formation temperatures below 760 degrees C. The Ti content in the inner mantles (up to 40 ppm) is indicative of temperatures in the 760-880 degrees C range. The temperature estimates for the outer mantles are 900-940 degrees C, indicating a pronounced overlap with the peak metamorphic values yielded by the Zr-in-rutile geothermometer for the same rocks (910-950 degrees C). The internal textures of the zircons and the occurrence of index minerals within the distinct domains allow us to unravel the stages of the complex metamorphic history recorded in the zircon. Our data show that the zircon cores are inherited seeds of pre-metamorphic (magmatic?) origin, the inner mantles were formed on the prograde metamorphic stage, the outer mantles record ultrahigh-pressure metamorphism and the outermost rims mark the retrograde metamorphic stage. The observed zircon internal textures are thus clearly correlated with distinct growth events, and in some examples reflect a major part of the metamorphic history. It is concluded that the combined application of the CL, Raman spectroscopy and EPMA techniques to zircon offers significant potential for deciphering the metamorphic evolution of deeply-subducted rocks.
Ключевые слова: RECRYSTALLIZATION; COMPLEX; KAZAKSTAN; GARNET; BEARING; EXHUMATION; RADIATION-DAMAGE; PRESSURE METAMORPHIC ROCKS; Kokchetav massif; ultrahigh-pressure metamorphism; electron microprobe; Raman spectroscopy; cathodoluminescence; zircon; COESITE INCLUSIONS; SUBDUCTION-COLLISION ZONE;
Издано: 2020
Физ. характеристика: с.949-958
Цитирование: 1. Buslov M.M., Dobretsov N.L., Vovna G.M. and Kiselev V.I. (2015) Structural location, composition, and geodynamic nature of diamond-bearing metamorphic rocks of the Kokchetav subduction-collision zone of the Central Asian Fold Belt (northern Kazakhstan). Russian Geology and Geophysics, 56, 64-80. 2. Caruba R., Baumer A., Ganteaume M. and Iacconi P. (1985) An experimental study of hydroxyl groups and water in synthetic and natural zircons: a model of the metamict state. American Mineralogist, 70, 1224-1231. 3. Campomenosi N., Rubatto D., Hermann J., Mihailova B., Scambelluri M. and Alvaro M. (2020) Establishing a protocol for the selection of zircon inclusions in garnet for Raman thermobarometry. American Mineralogist: Journal of Earth and Planetary Materials, 105, 992-1001. 4. Chakoumakos B.C., Murakami T., Lumpkin G.R. and Ewing R.C. (1987) Alpha-decay-induced fracturing in zircon: the transition from the crystalline to the metamict state. Science, 236, 1556-1559. 5. Chopin C. and Sobolev N.V. (1995) Principal mineralogic indicators of UHP in crustal rocks. Pp. 96-131 in: Ultrahigh-Pressure Metamorphism (R.G. Coleman and X. Wang, editors). Cambridge University Press, UK. 6. Claoué-Long J.C., Sobolev N.V., Shatsky V.S. and Sobolev A.V. (1991) Zircon response to diamond-pressure metamorphism in the Kokchetav massif, USSR. Geology, 19, 710-713. 7. Corfu F., Hanchar J.M., Hoskin P.W.O. and Kinny P. (2003) Atlas of zircon textures. Pp. 469-500 in: Zircon (J.M. Hanchar and P.W.O. Hoskin, editors). Reviews in Mineralogy and Geochemistry, 53. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA. 8. Dobretsov N.L. (1998) Structural and geodynamic evolution of diamond-bearing metamorphic rocks of Kokchetav Massif, Kazakhstan. Russian Geology and Geophysics, 39, 1650-1661. 9. Dobretsov N.L. and Shatsky V.S. (2004) Exhumation of high-pressure rocks of the Kokchetav massif: facts and models. Lithos, 78, 307-318. 10. Dobretsov N.L., Shatsky V.S. and Sobolev N.V. (1995a) Comparison of the Kokchetav and Dabie Shan metamorphic complexes: coesite-and diamond-bearing rocks and UHP-HP accretional-collisional events. International Geology Review, 37, 636-656. 11. Dobretsov N.L., Sobolev N.V., Shatsky V.S., Coleman R.G. and Ernst W.G. (1995b) Geotectonic evolution of diamondiferous paragneisses, Kokchetav Complex, northern Kazakhstan: The geologic enigma of ultrahigh-pressure crustal rocks within a Paleozoic foldbelt. Island Arc, 4, 267-279. 12. Dobretsov N.L., Buslov M.M., Zhimulev F.I., Travin A.V. and Zayachkovsky A.A. (2006) Vendian-Early Ordovician geodynamic evolution and model for exhumation of ultrahigh-and high-pressure rocks from the Kokchetav subduction-collision zone (northern Kazakhstan). Russian Geology and Geophysics, 47, 424-440. 13. Ewing R.C., Meldrum A., Wang L., Weber W.J. and Corrales L.R. (2003) Radiation effects in zircon. Pp. 387-425 in: Zircon (J.M. Hanchar and P.W.O. Hoskin, editors). Reviews in Mineralogy and Geochemistry, 53. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA. 14. Farges F. and Calas G. (1991) Structural analysis of radiation damage in zircon and thorite: An X-ray absorption spectroscopic study. American Mineralogist, 76, 60-73. 15. Ferry J.M. and Watson E.B. (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154, 429-437. 16. Hacker B.R., Calvert A., Zhang R.Y., Ernst W.G. and Liou J.G. (2003) Ultrarapid exhumation of ultrahigh-pressure diamond-bearing metasedimentary rocks of the Kokchetav Massif, Kazakhstan? Lithos, 70, 61-75. 17. Hanchar J.M. and Miller C.F. (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complex crustal histories. Chemical Geology, 110, 1-13. 18. Hermann J., Rubatto D., Korsakov A.V. and Shatsky V.S. (2001) Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141, 66-82. 19. Hermann J., Rubatto D., Korsakov A. and Shatsky V.S. (2006) The age of metamorphism of diamondiferous rocks determined with SHRIMP dating of zircon. Russian Geology and Geophysics, 47, 513-520. 20. Katayama I., Zayachkovsky A.A. and Maruyama S. (2000) Prograde pressure-temperature records from inclusions in zircons from ultrahigh-pressure-high-pressure rocks of the Kokchetav Massif, northern Kazakhstan. Island Arc, 9, 417-427. 21. Katayama I., Maruyama S., Parkinson C.D., Terada K. and Sano Y. (2001) Ion micro-probe U-Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan. Earth and Planetary Science Letters, 188, 185-198. 22. Katayama I., Muko A., Iizuka T., Maruyama S., Terada K., Tsutsumi Y., Sano Y., Zhang R.Y. and Liou J.G. (2003) Dating of zircon from Ti-clinohumite-bearing garnet peridotite: Implication for timing of mantle metasomatism. Geology, 31, 713-716. 23. Katayama I. and Maruyama S. (2009) Inclusion study in zircon from ultrahigh-pressure metamorphic rocks in the Kokchetav massif: an excellent tracer of metamorphic history. Journal of the Geological Society, 166, 783-796. 24. Korsakov A.V., Shatsky V.S., Sobolev N.V. and Zayachokovsky A.A. (2002) Garnet-biotite-clinozoisite gneiss: a new type of diamondiferous metamorphic rock from the Kokchetav Massif. European Journal of Mineralogy, 14, 915-928. 25. Korsakov A.V., Toporski J., Dieing T., Yang J. and Zelenovskiy P.S. (2015) Internal diamond morphology: Raman imaging of metamorphic diamonds. Journal of Raman Spectroscopy, 46, 880-888. 26. Liao J., Malusà M.G., Zhao L., Baldwin S.L., Fitzgerald P.G. and Gerya T. (2018) Divergent plate motion drives rapid exhumation of (ultra) high pressure rocks. Earth and Planetary Science Letters, 491, 67-80. 27. Liou J.G., Tsujimori T., Yang J., Zhang R.Y. and Ernst W.G. (2014) Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: A review. Journal of Asian Earth Sciences, 96, 386-420. 28. Liu F.L. and Liou J.G. (2011) Zircon as the best mineral for P-T-time history of UHP metamorphism: a review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40, 1-39. 29. Marsellos A.E. and Garver J.I. (2010) Radiation damage and uranium concentration in zircon as assessed by Raman spectroscopy and neutron irradiation. American Mineralogist, 95, 1192-1201. 30. Mikhno A.O. and Korsakov A.V. (2013) K 2 O prograde zoning pattern in clinopyroxene from the Kokchetav diamond-grade metamorphic rocks: Missing part of metamorphic history and location of second critical end point for calc-silicate system. Gondwana Research, 23, 920-930. 31. Mikhno A.O. and Korsakov A.V. (2015) Carbonate, silicate, and sulfide melts: heterogeneity of the UHP mineral-forming media in calc-silicate rocks from the Kokchetav massif. Russian Geology and Geophysics, 56, 81-99. 32. Mosenfelder J.L., Schertl H.-P., Smyth J.R. and Liou J.G. (2005) Factors in the preservation of coesite: The importance of fluid infiltration. American Mineralogist, 90, 779-789. 33. Murakami T., Chakoumakos B.C. and Ewing R.C. (1986) X-ray powder diffraction analysis of alpha-event radiation damage in zircon(ZrSiO 4). Pp. 745-753 in: Advances in Ceramics: Nuclear Waste Management II (D.E. Clark, W.B. White and J. Machiels, editors). American Ceramic Society, Columbus, Ohio. 34. Nasdala L., Irmer G. and Wolf D. (1995) The degree of metamictization in zircons: a Raman spectroscopic study. European Journal of Mineralogy, 7, 471-478. 35. Nasdala L., Wenzel M., Vavra G., Irmer G., Wenzel T. and Kober B. (2001) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contributions to Mineralogy and Petrology, 141, 125-144. 36. Nasdala L., Lengauer C.L., Hanchar J.M., Kronz A., Wirth R., Blanc P., Kennedy A.K. and Seydoux-Guillaume A.-M. (2002) Annealing radiation damage and the recovery of cathodoluminescence. Chemical Geology, 191, 121-140. 37. Nasdala L., Kronz A., Hanchar J.M., Tichomirowa M., Davis D.W. and Hofmeister W. (2006) Effects of natural radiation damage on back-scattered electron images of single crystals of minerals. American Mineralogist, 91, 1739-1746. 38. Ogasawara Y., Fukasawa K. and Maruyama S. (2002) Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. American Mineralogist, 87, 454-461. 39. Orwa J.O., Nugent K.W., Jamieson D.N. and Prawer S. (2000) Raman investigation of damage caused by deep ion implantation in diamond. Physical Review B, 62, 5461. 40. Ota T., Terabayashi M., Parkinson C.D. and Masago H. (2000) Thermobaric structure of the Kokchetav ultrahigh-pressure-high-pressure massif deduced from a north-south transect in the Kulet and Saldat-Kol regions, northern Kazakhstan. Island Arc, 9, 328-357. 41. Palenik C.S., Nasdala L. and Ewing R.C. (2003) Radiation damage in zircon. American Mineralogist, 88, 770-781. 42. Parkinson C.D. (2000) Coesite inclusions and prograde compositional zonation of garnet in whiteschist of the HP-UHPM Kokchetav massif, Kazakhstan: a record of progressive UHP metamorphism. Lithos, 52, 215-233. 43. Parkinson C.D. and Katayama I. (1999) Present-day ultrahigh-pressure conditions of coesite inclusions in zircon and garnet: Evidence from laser Raman microspectroscopy. Geology, 27, 979-982. 44. Perchuk L.L., Safonov O.G., Yapaskurt V.O. and Barton Jr J.M. (2002) Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicator of mantle-derived ultrahigh-potassic liquids: an analytical review. Lithos, 60, 89-111. 45. Perraki M., Korsakov A.V., Smith D.C. and Mposkos E. (2009) Raman spectroscopic and microscopic criteria for the distinction of microdiamonds in ultrahigh-pressure metamorphic rocks from diamonds in sample preparation materials. American Mineralogist, 94, 546-556. 46. Rubatto D. and Hermann J. (2007) Zircon behaviour in deeply subducted rocks. Elements, 3, 31-35. 47. Rubatto D., Liati A. and Gebauer D. (2003) Dating UHP metamorphism. Pp. 341-363 in: EMU Notes in Mineralogy, Vol. 5. 48. Schaltegger U., Fanning C.M., Günther D., Maurin J.C., Schulmann K. and Gebauer D. (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology, 134, 186-201. 49. Schertl H.-P. and Sobolev N.V. (2013) The Kokchetav Massif, Kazakhstan:Type locality of diamond-bearing UHP metamorphic rocks. Journal of Asian Earth Sciences, 63, 5-38. 50. Shatsky V.S., Sobolev N.V., Zayachkovsky A.A., Zorin T.Y. and Vavilov M.A. (1991) New occurrence of microdiamonds in metamorphic rocks as a proof of regional character of ultrahigh pressure metamorphism in Kokchetav massif. Doklady Akademii Nauk SSSR, 321, 193-198. 51. Shatsky V.S., Theunissen K., Dobretsov N.L. and Sobolev N.V. (1998) New indications of ultrahigh-pressure metamorphism in the mica schists of the Kulet site of the Kokchetav Massif (north Kazakhstan). Russian Geology and Geophysica, 39, 1041-1046. 52. Shatsky V.S., Jagoutz E., Sobolev N.V., Kozmenko O.A., Parkhomenko V.S. and Troesch M. (1999) Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav massif (Northern Kazakhstan). Contributions to Mineralogy and Petrology, 137, 185-205. 53. Shatsky V.S., Skuzovatov S.Y., Ragozin A.L. and Sobolev N.V. (2015) Mobility of elements in a continental subduction zone: evidence from the UHP metamorphic complex of the Kokchetav massif. Russian Geology and Geophysics, 56, 1016-1034. 54. Shchepetova O.V., Korsakov A.V., Mikhailenko D.S., Zelenovskiy P.S., Shur V.Y. and Ohfuji H. (2017) Forbidden mineral assemblage coesite-disordered graphite in diamond-bearing kyanite gneisses (Kokchetav Massif). Journal of Raman Spectroscopy, 48, 1606-1612. 55. Shimizu N. (1971) Potassium contents of synthetic clinopyroxenes at high pressures and temperatures. Earth and Planetary Science Letters, 11, 374-380. 56. Shimizu R. and Ogasawara Y. (2014) Radiation damage to Kokchetav UHPM diamonds in zircon: Variations in Raman, photoluminescence, and cathodoluminescence spectra. Lithos, 206, 201-213. 57. Sobolev N.V. (1994) Zircon from ultrahigh pressure metamorphic rocks of folded regions as an unique container of inclusions of diamond, coesite and coexisting minerals. Doklady Akademii Nauk, 334, 488-492. 58. Sobolev N.V. and Shatsky V.S. (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature, 343, 742. 59. Sobolev N.V., Shatsky V.S., Vavilov M.A. and Goryainov S.V. (1991) Coesite inclusion in zircon from diamondiferous gneiss of Kokchetav massif-first find of coesite in metamorphic rocks in the USSR territory. Doklady Akademii Nauk SSSR, 321, 184-188. 60. Steger S., Nasdala L. and Wagner A. (2013) Raman spectra of diamond abrasives and possible artefacts in detecting UHP microdiamond. CORALS-2013 (Conference on Raman and Luminescence Spectroscopy in the Earth Sciences), Vienna, Austria, pp. 95-96. 61. Stepanov A.S., Hermann J., Rubatto D., Korsakov A.V. and Danyushevsky L.V. (2016a) Melting history of an ultrahigh-pressure paragneiss revealed by multiphase solid inclusions in garnet, Kokchetav massif, Kazakhstan. Journal of Petrology, 57, 1531-1554. 62. Stepanov A.S., Rubatto D., Hermann J. and Korsakov A.V. (2016b) Contrasting PT paths within the Barchi-Kol UHP terrain (Kokchetav Complex): Implications for subduction and exhumation of continental crust. American Mineralogist, 101, 788-807. 63. Tailby N.D., Walker A.M., Berry A.J., Hermann J., Evans K.A., Mavrogenes J.A., O'Neill H.S.C., Rodina I.S., Soldatov A.V. and Rubatto D. (2011) Ti site occupancy in zircon. Geochimica et Cosmochimica Acta, 75, 905-921. 64. Theunissen K., Dobretsov N.L., Korsakov A.V., Travin A.V., Shatsky V.S., Smirnova L.V. and Boven A. (2000) Two contrasting petrotectonic domains in the Kokchetav megamelange (north Kazakhstan): difference in exhumation mechanisms of ultrahigh-pressure crustal rocks, or a result of subsequent deformation ? Island Arc, 9, 284-303. 65. Tomkins H.S., Powell R. and Ellis D.J. (2007) The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology, 25, 703-713. 66. Vavra G. (1990) On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study. Contributions to Mineralogy and Petrology, 106, 90-99. 67. Watson E.B., Wark D.A. and Thomas J.B. (2006) Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413. 68. Weber W.J., Ewing R.C. and Meldrum A. (1997) The kinetics of alpha-decay-induced amorphization in zircon and apatite containing weapons-grade plutonium or other actinides. Journal of Nuclear Materials, 250, 147-155. 69. Whitney D.L. and Evans B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187. 70. Woodhead J.A., Rossman G.R. and Silver L.T. (1991) The metamictization of zircon: Radiation dose-dependent structural characteristics. American Mineralogist, 76, 74-82. 71. Wu Y. and Zheng Y. (2004) Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49, 1554-1569. 72. Zamyatin D.A., Shchapova Y.V., Votyakov S.L., Nasdala L. and Lenz C. (2017) Alteration and chemical U-Th-total Pb dating of heterogeneous high-uranium zircon from a pegmatite from the Aduiskii Massif, Middle Urals, Russia. Mineralogy and Petrology, 111, 475-497. 73. Zamyatin D.A., Votyakov S.L. and Shchapova Y.V. (2019) JPD-analysis as a new approach for studying the zircon texture with micron spatial resolution with application to geochronology. Doklady Earth Sciences, 485, 376-380. 74. Zhang M. and Salje E.K.H. (2001) Infrared spectroscopic analysis of zircon: Radiation damage and the metamict state. Journal of Physics: Condensed Matter, 13, 3057. 75. Zhang M., Salje E.K.H., Ewing R.C., Farnan I., Ríos S., Schlüter J. and Leggo P. (2000) Alpha-decay damage and recrystallization in zircon: evidence for an intermediate state from infrared spectroscopy. Journal of Physics: Condensed Matter, 12, 5189. 76. Zhang R.Y., Liou J.G., Ernst W.G., Coleman R.G., Sobolev N.V. and Shatsky V.S. (1997) Metamorphic evolution of diamond-bearing and associated rocks from the Kokchetav Massif, northern Kazakhstan. Journal of Metamorphic Geology, 15, 479-496.