Инд. авторы: Peltek S.E., Bryanskaya A.V., Uvarova Y.E., Rozanov A.S., Ivanisenko T.V., Ivanisenko V.A., Lazareva E.V., Saik O.V., Efimov V.M., Zhmodik S.M., Taran O.P., Slynko N.M., Shekhovtsov S.V., Parmon V.N., Dobretsov N.L., Kolchanov N.A.
Заглавие: Young << oil site >> of the Uzon Caldera as a habitat for unique microbial life
Библ. ссылка: Peltek S.E., Bryanskaya A.V., Uvarova Y.E., Rozanov A.S., Ivanisenko T.V., Ivanisenko V.A., Lazareva E.V., Saik O.V., Efimov V.M., Zhmodik S.M., Taran O.P., Slynko N.M., Shekhovtsov S.V., Parmon V.N., Dobretsov N.L., Kolchanov N.A. Young << oil site >> of the Uzon Caldera as a habitat for unique microbial life // BMC Microbiology. - 2020. - Vol.20. - Iss. SUPPL. - Art.349. - ISSN 1471-2180. - EISSN 1471-2180.
Внешние системы: DOI: 10.1186/s12866-020-02012-1; РИНЦ: 45172394; PubMed: 33228530; WoS: 000595675400002;
Реферат: eng: Background The Uzon Caldera is one of the places on our planet with unique geological, ecological, and microbiological characteristics. Uzon oil is the youngest on Earth. Uzon oil has unique composition, with low proportion of heavy fractions and relatively high content of saturated hydrocarbons. Microbial communities of the << oil site >> have a diverse composition and live at high temperatures (up to 97 degrees C), significant oscillations of Eh and pH, and high content of sulfur, sulfides, arsenic, antimony, and mercury in water and rocks. Results The study analyzed the composition, structure and unique genetics characteristics of the microbial communities of the oil site, analyzed the metabolic pathways in the communities. Metabolic pathways of hydrocarbon degradation by microorganisms have been found. The study found statistically significant relationships between geochemical parameters, taxonomic composition and the completeness of metabolic pathways. It was demonstrated that geochemical parameters determine the structure and metabolic potential of microbial communities. Conclusions There were statistically significant relationships between geochemical parameters, taxonomic composition, and the completeness of metabolic pathways. It was demonstrated that geochemical parameters define the structure and metabolic potential of microbial communities. Metabolic pathways of hydrocarbon oxidation was found to prevail in the studied communities, which corroborates the hypothesis on abiogenic synthesis of Uzon hydrothermal petroleum.
Ключевые слова: The Uzon Caldera; ORGANIC GEOCHEMISTRY; NEW-ZEALAND; SP NOV.; HYDROTHERMAL PETROLEUM; THERMOPHILIC BACTERIUM; Metabolic pathways; HYDROCARBONS; KAMCHATKA; CRUDE-OIL; GEOTHERMAL REGION; COMMUNITY STRUCTURE; Microbial communities; Oil site;
Издано: 2020
Физ. характеристика: 349
Цитирование: 1. Simoneit BRT, Kvenvolden KA. Comparison of14C ages of hydrothermal petroleums. Org Geochem. 1994;21(5):525–9. DOI: 10.1016/0146-6380(94)90103-1 2. Dobretsov NL, Lazareva EV, Zhmodik SM, Bryanskaya AV, Morozova VV, Tikunova NV, et al. Geological, hydrogeochemical, and microbiological characteristics of the oil site of the Uzon caldera (Kamchatka). Russ Geol Geophys. 2015;56(1–2):39–63. DOI: 10.1016/j.rgg.2015.01.003 3. Didyk BM, Simoneit BRT. Hydrothermal oil of Guaymas Basin and implications for petroleum formation mechanisms. Nature. 1989;342(6245):65–9. DOI: 10.1038/342065a0 4. Clifton CG, Walters CC, Simoneit BRT. Hydrothermal petroleums from Yellowstone National Park, Wyoming, USA. Appl Geochem. 1990;5(1–2):169–91. DOI: 10.1016/0883-2927(90)90047-9 5. Simoneit BRT, Aboul-Kassim TAT, Tiercelin JJ. Hydrothermal petroleum from lacustrine sedimentary organic matter in the east African rift. Appl Geochem. 2000;15(3):355–68. DOI: 10.1016/S0883-2927(99)00044-X 6. Simoneit BRT, Deamer DW, Kompanichenko V. Characterization of hydrothermally generated oil from the Uzon caldera, Kamchatka. Appl Geochem. 2009;24(2):303–9. DOI: 10.1016/j.apgeochem.2008.10.007 7. Varfolomeev SD, Karpov GA, Synal H-A, Lomakin SM, Nikolaev EN. The youngest natural oil on earth. Dokl Chem. 2011;438(1):144–7. DOI: 10.1134/S0012500811050053 8. Beskrovnyi NS, Lebedev BA. Oil seep in the Uzon caldera of Kamchatka. Dokl Akad Nauk. 1971;201(4):953–6 [in Russian]. 9. Kalinko MK. Genesis of oil microshows of the Uzon caldera (eastern Kamchatka). In: Transformation of organic matter in the recent and fossil sediments and the major stages of generation of free hydrocarbons. Moscow: Trudy VNIGNI; 1975. p. 50–8. [in Russian]. 10. Bazhenova OK, Arefiev OA, Frolov EB. Oil of the volcano Uzon caldera, Kamchatka. Org Geochem. 1998;29(1–3):421–8. DOI: 10.1016/S0146-6380(98)00129-6 11. Kontorovich AE, Bortnikova SB, Karpov GA, Kashirtsev VA, Kostyreva EA, Fomin AN. Uzon volcano caldera (Kamchatka): a unique natural laboratory of the present-day naphthide genesis. Russ Geol Geophys. 2011;52(8):768–72. DOI: 10.1016/j.rgg.2011.07.002 12. Fursenko EA, Kashirtsev VA, Kontorovich AE, Fomin AN. Naphthides of continental hydrotherms (Uzon, Yellowstone, New Zealand): geochemistry and genesis. Russ Geol Geophys. 2014;55(5–6):726–36. DOI: 10.1016/j.rgg.2014.05.015 13. Holm NG, Cairns-Smith AG, Daniel RM, Ferris JP, Hennet RJ, Shock E, et al. Marine hydrothermal systems and the origin of life. Orig Life Evol Biosph. 1992;22(1–4):181–242. DOI: 10.1007/BF01808024 14. Holm NG, Charlou JL. Initial indications of abiotic formation of hydrocarbons in the rainbow ultramafic hydrothermal system, mid-Atlantic ridge. Earth Planet Sci Lett. 2001;191(1–2):1–8. DOI: 10.1016/S0012-821X(01)00397-1 15. Foustoukos DI, Seyfried WE. Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts. Science. 2004;304(5673):1002–5. DOI: 10.1126/science.1096033 16. Simoneit BRT. Petroleum generation, an easy and widespread process in hydrothermal systems: an overview. Appl Geochem. 1990;5(1–2):3–15. DOI: 10.1016/0883-2927(90)90031-Y 17. Weston RJ, Woolhouse AD. Organic geochemistry of the sedimentary basins of New Zealand part IV. A biomarker study of the petroleum seepage and some well core bitumens from the geothermal region of Ngawha Springs. Appl Geochem. 1987;2(3):305–19. DOI: 10.1016/0883-2927(87)90046-1 18. Czochanska Z, Sheppard CM, Weston RJ, Woolhouse AD, Cook RA. Organic geochemistry of sediments in New Zealand. Part I. a biomarker study of the petroleum seepage at the geothermal region of Waiotapu. Geochim Cosmochim Acta. 1986;50(4):507–15. DOI: 10.1016/0016-7037(86)90100-6 19. Yamanaka T, Ishibashi J, Hashimoto J. Organic geochemistry of hydrothermal petroleum generated in the submarine Wakamiko caldera, southern Kyushu, Japan. Org Geochem. 2000;31(11):1117–32. DOI: 10.1016/S0146-6380(00)00119-4 20. Leonov VL, Grib EN. Calderas and ignimbrites of Uzon-Semiachik area, Kamchatka. Vulkanol i Seismol. 1998;3:41–59 [in Russian]. 21. Fedotov SA. Active volcanoes of Kamchatka. Moscow: Nauka; 1991. [in Russian]. 22. Bychkov AY. A geochemical model of contemporary ore formation in the Uzon caldera (Kamchatka). Moscow: GEOS; 2009. [in Russian]. 23. Egorova IA. Age and paleogeography of formation of volcano-sedimentary deposits in the Uzon-Geizernaya caldera depression, Kamchatka (according to Palyological data). Volcanol Seismol. 1993;15(2):157–76 [in Russian]. 24. Subsoil M. Volcanism, hydrothermal process and ore formation; 1974. [in Russian]. 25. Migdisov AA, Bychkov AY. The behaviour of metals and Sulphur during the formation of hydrothermal mercury-antimony-arsenic mineralization, Uzon caldera, Kamchatka, Russia. J Volcanol Geotherm Res. 1998;84(1–2):153–71. DOI: 10.1016/S0377-0273(98)00038-9 26. Karpov GS. Modern Hydrotherms and hg–Sb–as mineralization. Moskow: Nauka; 1988. [in Russian]. 27. Beskrovnyi NS, Glavatskikh SF, Lebedev BA, Naboko SI, Chegletsova EA. Metals and oil in hydrothermal solutions of the Uzon caldera. In: Modern metal-forming solutions. Petropavlovsk-Kamchatskii: Inst. Vulkanologii DVO AN; 1970. p. 21–2. [in Russian]. 28. Lukin AE, Pikovskij YI. New data on isotope composition of the hydrothermal oil (the caldera Uzon at Kamchatka). Dokl Akad Nauk. 2004;398(1):90–3 [in Russian]. 29. Karpov G, Bonch-Osmolovskaya E, Zavarzin G, Lupikina EG. To the characteristic of thermophilic microorganisms of the Uzon caldera (eastern Kamchatka): conservation of the biodiversity of Kamchatka and adjacent seas. Petropavlovsk-Kamchatsky: Kamchatpress; 2008. p. 109–12. [in Russian]. 30. Gradova NB, Gornova IB, Eddaudi R, Salina RN. Use of bacteria of the genus Azotobacter for bioremediation of oil-contaminated soils. Appl Biochem Microbiol. 2003;39(3):279–81. DOI: 10.1023/A:1023579628148 31. Rahman KSM, Rahman T, Lakshmanaperumalsamy P, Banat IM. Occurrence of crude oil degrading bacteria in gasoline and diesel station soils. J Basic Microbiol. 2002;42(4):284–91. DOI: 10.1002/1521-4028(200208)42:4<284::AID-JOBM284>3.0.CO;2-M 32. Stabnikova EV, Selezneva MV, Ivanov VN, Reva O. Theoretical and experimental screening of microbial component of biopreparation using for bioremediation of soil contaminated with oil. Appl Biochem Microbiol. 1995;31:534–40 [in Russian]. 33. Gumerov VM, Mardanov AV, Beletsky AV, Bonch-Osmolovskaya EA, Ravin NV. Molecular analysis of microbial diversity in the Zavarzin spring, Uzon caldera, Kamchatka. Microbiology. 2011;80(2):244–51. DOI: 10.1134/S002626171102007X 34. Lobkova LE, Lobkov EG. The role of biological components in the ecosystems of the Uzon and Geyser Valley thermal fields and some aspects of the protection of thermal biogeocenoses: preserving the biodiversity of Kamchatka and adjacent seas. Petropavlovsk-Kamchatsky: KamchatNIRO; 2003. p. 258–62. [in Russian]. 35. Mardanov AV, Gumerov VM, Beletsky AV, Perevalova AA, Karpov GA, Bonch-Osmolovskaya EA, et al. Uncultured archaea dominate in the thermal groundwater of Uzon caldera, Kamchatka. Extremophiles. 2011;15(3):365–72. DOI: 10.1007/s00792-011-0368-1 36. Kochetkova TV, Rusanov II, Pimenov NV, Kolganova TV, Lebedinsky AV, Bonch-Osmolovskaya EA, et al. Anaerobic transformation of carbon monoxide by microbial communities of Kamchatka hot springs. Extremophiles. 2011;15(3):319–25. DOI: 10.1007/s00792-011-0362-7 37. Perevalova AA, Svetlichny VA, Kublanov IV, Chernyh NA, Kostrikina NA, Tourova TP, et al. Desulfurococcus fermentans sp. nov., a novel hyperthermophilic archaeon from a Kamchatka hot spring, and emended description of the genus Desulfurococcus. Int J Syst Evol Microbiol. 2005;55(3):995–9. DOI: 10.1099/ijs.0.63378-0 38. Slepova TV, Sokolova TG, Lysenko AM, Tourova TP, Kolganova TV, Kamzolkina OV, et al. Carboxydocella sporoproducens sp. nov., a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol. 2006;56(4):797–800. 10.1099/ijs.0.63961-0. DOI: 10.1099/ijs.0.63961-0 39. Gumerov VM. Molecular analysis of microbial biodiversity of hot springs of Kamchatka. Moscow: Dis. Cand. Biol. Sciences; 2011. [in Russian]. 40. Chernyh NA, Mardanov AV, Gumerov VM, Miroshnichenko ML, Lebedinsky AV, Merkel AY, et al. Microbial life in Bourlyashchy, the hottest thermal pool of Uzon caldera, Kamchatka. Extremophiles. 2015;19(6):1157–71. DOI: 10.1007/s00792-015-0787-5 41. Slutskaya ES, Bezsudnova EY, Mardanov AV, Gumerov VM, Rakitina TV, Popov VO, et al. Characteristics of the new M42 aminopeptidase from the crenarchaea of Desulfurococcus kamchatkensis. Dokl Akad Nauk. 2012;I(442):551–4 [in Russian]. 42. Zenova GM, Manucharova NA, Zvyagintsev DG. Extremophilic and extremotolerant actinomycetes in different soil types. Eurasian Soil Sci. 2011;44(4):417–36. DOI: 10.1134/S1064229311040132 43. Petushkova YP, Lyalikova NN, Poglazova MN. Microorganisms found on the Ferapont (Vologda oblast, Russian S.F.S.R., U.S.S.R.) monastery frescoes. Microbiology. 1989;58:1021–30 [in Russian]. 44. Berdichevskaya MV, Kozyreva GI, Blaginykh AV. The size, species composition, and oxygenase activity of the hydrocarbon-oxidizing community of oil-polluted Ural and westem Siberia rivers. Microbiology. 1991;60:122–8 [in Russian]. 45. Greer CW, van Beilen JB, Labbe D, Smits THM, Whyte LG, Witholt B. Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol. 2002;68(12):5933–42. DOI: 10.1128/AEM.68.12.5933-5942.2002 46. Amouric A, Quéméneur M, Grossi V, Liebgott PP, Auria R, Casalot L. Identification of different alkane hydroxylase systems in Rhodococcus ruber strain SP2B, an hexane-degrading actinomycete. J Appl Microbiol. 2010;108(6):1903–16. DOI: 10.1111/j.1365-2672.2009.04592.x 47. Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS. Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait. Environ Pollut. 1990;65(1):1–17. DOI: 10.1016/0269-7491(90)90162-6 48. Lechevalier MP, Lechevalier H. Biology of actinomycetes not belonging to the genus Streptomyces. Biotechnol Ser. 1985;6:315–58. 49. Nakajima K, Sato A, Takahara Y, Iida T. Microbial oxidation of isoprenoid alkanes, phytane, norpristane and farnesanet. Agric Biol Chem. 1985;49(7):1993–2002. 50. Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V. Biodegradation potential of the genus Rhodococcus. Environ Int. 2009;35(1):162–77. DOI: 10.1016/j.envint.2008.07.018 51. Baptist JN, Gholson RK, Coon MJ. Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. Biochim Biophys Acta. 1963;69(C):40–7. DOI: 10.1016/0006-3002(63)91223-X 52. van Beilen JB, Kingma J, Witholt B. Substrate specificity of the alkane hydroxylase system of pseudomonas oleovorans GPo1. Enzyme Microb Technol. 1994;16(10):904–11. DOI: 10.1016/0141-0229(94)90066-3 53. Grant C, Woodley JM, Baganz F. Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli. Enzyme Microb Technol. 2011;48(6–7):480–6. DOI: 10.1016/j.enzmictec.2011.01.008 54. Kersters K, Devos P, Gillis M, Swings J, Vandamme P, Stackebrandt E. The prokaryotes: a handbook on the biology of bacteria. New York: Springer Verlag; 2006. 55. Joseph TC, Baby A, Reghunathan D, Varghese AM, Murugadas V, Lalitha KV. Draft genome sequence of the Halophilic and highly Halotolerant Gammaproteobacteria strain MFB021. Genome Announc. 2014;2(6):e01156–14. 56. Kato T, Haruki M, Imanaka T, Morikawa M, Kanaya S. Isolation and characterization of long-chain-alkane degrading bacillus thermoleovorans from deep subterranean petroleum reservoirs. J Biosci Bioeng. 2001;91(1):64–70. DOI: 10.1016/S1389-1723(01)80113-4 57. Tourova TP, Nazina TN, Mikhailova EM, Rodionova TA, Ekimov AN, Mashukova AV, et al. alkB homologs in thermophilic bacteria of the genus Geobacillus. Mol Biol. 2008;42(2):217–26. DOI: 10.1134/S0026893308020076 58. Golovleva LA. Bioremediation of soils contaminated by pollutants. Ann Agrarian Sci. 2014;10(2):53–7. 59. Baraniecki CA, Aislabie J, Foght JM. Characterization of Sphingomonas sp. ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol. 2002;43(1):44–54. DOI: 10.1007/s00248-001-1019-3 60. Johnsen AR, Wick LY, Harms H. Principles of microbial PAH-degradation in soil. Environ Pollut. 2005;133(1):71–84. DOI: 10.1016/j.envpol.2004.04.015 61. Bacosa HP, Suto K, Inoue C. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan. J Environ Sci Health. 2013;48(8):835–46. DOI: 10.1080/10934529.2013.761476 62. Weekers F, Thonart P, Jacques P, Springael D, Mergeay M, Diels L. Effect of drying on bioremediation bacteria PropertiesBiotechnology for fuels and chemicals. Colorado: Colorado Springs; 1998. p. 311–22. 10.1007/978-1-4612-1814-2_30. DOI: 10.1007/978-1-4612-1814-2_30 63. Timergazina IF, Perekhodova LS. To the problem of the biological oxidation of oil and oil products by hydrocarbon oxidizing microorganisms. Petroleum Geol Theory Pract. 2012;7(1):1–28 [in Russian]. 64. Takai K, Nakagawa S. The family Hydrogenothermaceae. The Prokaryotes: Other major lineages of Bacteria and the Archaea; 2014. p. 689–99. 65. Shestakov SV. Impact of metagenomics on biotechnological development. Appl Biochem Microbiol. 2012;48(9):705–15. DOI: 10.1134/S0003683812090050 66. Wagner ID, Zhao W, Zhang CL, Romanek CS, Rohde M, Wiegel J. Thermoanaerobacter uzonensis sp. nov., an anaerobic thermophilic bacterium isolated from a hot spring within the Uzon caldera, Kamchatka, Far East Russia. Int J Syst Evol Microbiol. 2008;58(11):2565–73. DOI: 10.1099/ijs.0.65343-0 67. Wagner ID, Varghese LB, Hemme CL, Wiegel J. Multilocus sequence analysis of thermoanaerobacter isolates reveals recombining, but differentiated, populations from geothermal springs of the Uzon caldera, Kamchatka, Russia. Front Microbiol. 2013;4(JUN):169. 68. Inskeep WP, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA, Richardson TH, et al. Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One. 2010;5(3):e9773. DOI: 10.1371/journal.pone.0009773 69. Inskeep WP, Jay ZJ, Tringe SG, Herrgård MJ, Rusch DB. The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front Microbiol. 2013;4:67. 70. Burgess EA, Unrine JM, Mills GL, Romanek CS, Wiegel J. Comparative geochemical and microbiological characterization of two thermal pools in the Uzon caldera, Kamchatka, Russia. Microb Ecol. 2012;63(3):471–89. DOI: 10.1007/s00248-011-9979-4 71. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6. DOI: 10.1038/nmeth.f.303 72. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. DOI: 10.1093/bioinformatics/btq461 73. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–72. DOI: 10.1128/AEM.03006-05 74. Abdi H. Partial least squares regression and projection on latent structure regression (PLS regression). Wiley Interdiscip Rev Comput Stat. 2010;2(1):97–106. DOI: 10.1002/wics.51 75. Hammer Ø, Harper DAT, Ryan PD. Past: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4(1):1–9.