Инд. авторы: Shapovalova M.O, Tolstykh N.D., Shelepaev R.A., Kalugin V.M
Заглавие: PGE-Cu-Ni Mineralization of Mafic-Ultramafic Massifs of the Khangai Upland, Western Mongolia
Библ. ссылка: Shapovalova M.O, Tolstykh N.D., Shelepaev R.A., Kalugin V.M PGE-Cu-Ni Mineralization of Mafic-Ultramafic Massifs of the Khangai Upland, Western Mongolia // MINERALS. - 2020. - Vol.10. - Iss. 11. - Art.942.
Внешние системы: DOI: 10.3390/min10110942; РИНЦ: 45210891; WoS: 000593237200001;
Реферат: eng: The mafic-ultramafic massifs with the PGE-Cu-Ni mineralization located in North-Central Mongolia: Oortsog, Dulaan, Mankhan, Yamat, and Nomgon were investigated. For the first time we consider these massifs as a single magmatic association and as fragments of Khangai batholith caused by the action of the plume responsible for the formation Permian Khangai LIP. The massifs fractionated from peridotite to gabbro have a similar typomorphic ore mineralogical and geochemical features, which change depending on the degrees of fractionation of magma and evolution of the sulfide melt. The least fractionated Oortsog massif originated from Ni-rich high-Mg basaltic magma. It is characterized by predominance of pyrrhotite mineralization due to exsolution of monosulfide solid solution (MSS). The most fractionated is the Nomgon massif originated from Cu-rich basaltic magma with bornite-chalcopyrite mineralization, formed as an exsolution of intermediate solid solution (ISS). The rest of the massifs have a medium characteristics between these two. The compositions of sulfides in the studied massifs change in accordance with the increase in sulfur fugacity from peridotite to gabbro: enrichment of pentlandite in Ni and pyrrhotite in S. The composition of PGM changes from Pt minerals in Oortsog massif to Pd minerals in Nomgon massif in the same direction. These massifs can be considered as potential for the PGE.
Ключевые слова: MANTLE PLUMES; GROUP MINERALS; PHASE-RELATIONS; GIANT BATHOLITHS; CONTINENTAL-CRUST; BATHOLITH FORMATION; SULFIDE MINERALIZATION; PLATINUM-GROUP ELEMENTS; LIP; PGMs; PGE-Cu-Ni; sulfide; geochemistry; mineralogy; Khangai upland; ASIAN OROGENIC BELT; ARSENIDE ORES;
Издано: 2020
Физ. характеристика: 942
Цитирование: 1. Abbott, D.H.; Isley, A.E. The intensity, occurrence, and duration of superplume events and eras over geological time. J. Geodyn. 2002, 34, 265-307, doi:10.1016/s0264-3707(02)00024-8. 2. Maier, W.D. Platinum-group element (PGE) deposits and occurrences: Mineralization styles, genetic concepts, and exploration criteria. J. Afr. Earth Sci. 2005, 41, 165-191, doi:10.1016/j.jafrearsci.2005.03.004. 3. Dobretsov, N.L.; Borisenko, A.S.; Izokh, A.E.; Zhmodik, S.M. A thermochemical model of Eurasian Permo-Triassic mantle plumes as a basis for prediction and exploration for Cu-Ni-PGE and rare-metal ore deposits. Russ. Geol. Geophys. 2010, 51, 903-924, doi:10.1016/j.rgg.2010.08.002. 4. Polyakov, G.V.; Tolstykh, N.D.; Mekhonoshin, A.S.; Izokh, A.E.; Podlipskii, M.Y.; Orsoev, D.A.; Kolotilina, T.B. Ultramafic-mafic igneous complexes of the Precambrian East Siberian metallogenic province (southern framing of the Siberian craton): Age, composition, origin, and ore potential. Russ. Geol. Geophys. 2013, 54, 1319-1331, doi:10.1016/j.rgg.2013.10.008. 5. Ernst, R.E., Jowitt, S.M. Large Igneous Provinces (LIPs) and metallogeny. Soc. Econ. Geol. Spec. Publ. 2013, 17, 17-51. 6. Mekhonoshin, A.S.; Tolstykh, N.D.; Podlipsky, M.Y.; Kolotilina, T.B.; Vishnevsky, A.V.; Benedyuk, Y.P. PGE mineralization of dunite-wehrlite massifs at the Gutara-Uda interfluve, Eastern Sayan. Geol. Ore Depos. 2013, 55, 162-175, doi:10.1134/s1075701513030021. 7. Tolstykh, N. PGE mineralization in marginal sulfide ores of the Chineisky layered intrusion, Russia. Mineral. Petrol. 2008, 92, 283-306, doi:10.1007/s00710-007-0209-1. 8. Borisenko, A.S.; Sotnikov, V.I.; Izokh, A.E.; Polyakov, G.V.; Obolensky, A.A. Permo-Triassic mineralization in Asia and its relation to plume magmatism. Russ. Geol. Geophys. 2006, 47, 170-186. 9. Izokh, A.E.; Polyakov, G.V.; Hoa, T.T.; Balykin, P.A.; Phuong, N.T. Permian-triassic ultramafic-mafic magmatism of Northern Vietnam and Southern China as expression of plume magmatism. Russ. Geol. Geophys. 2005, 46, 922-932. 10. Shellnutt, J.G. The Emeishan large igneous province: A synthesis. Geosci. Front. 2014, 5, 369-394, doi:10.1016/j.gsf.2013.07.003. 11. Yarmolyuk, V.V.; Kozlovsky, A.M.; Savatenkov, V.M.; Kovach, V.P.; Kozakov, I.K.; Kotov, A.B.; Lebedev, V.I.; Eenjin, G. Composition, sources, and geodynamic nature of giant batholiths in Central Asia: Evidence from the geochemistry and Nd isotopic characteristics of granitoids in the Khangai zonal magmatic area. Petrology 2016, 24, 433-461, doi:10.1134/s0869591116050064. 12. Izokh, A.E.; Vishnevskii, A.V.; Polyakov, G.V.; Shelepaev, R.A. Age of picrite and picrodolerite magmatism in western Mongolia. Russ. Geol. Geophys. 2011, 52, 7-23, doi:10.1016/j.rgg.2010.12.002. 13. Shelepaev, R.A.; Polyakov, G.V.; Izokh, A.E.; Vishnevsky, A.V.; Egorova, V.V.; Shelepov, Y.Y. The Perm Intraplate Mafic-Ultramafic Associations of Asia. Materials of Conference. Correlation of Altaides and Uralides:Magmatism, Metamorphism, Stratigraphy, Geochronology, Geodynamics and Metallogeny; Publishing House SB RAS: Novosibirsk, Russia, 2016; pp. 214-216. (In Russian) 14. Yarmolyuk, V.V.; Kuzmin, M.I.; Ernst, R.E. Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences. J. Asian Earth Sci. 2014, 93, 158-179, doi:10.1016/j.jseaes.2014.07.004. 15. Pirajno, F. Ore Deposits and Mantle Plumes; Kluwer Academic: Dordrecht, The Netherlands; Boston, MA, USA, 2000; p. 556. 16. Naldrett, A.J. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration; Springer: New York, NY, USA, 2004; p. 730. 17. Begg, G.C.; Hronsky, J.A.M.; Arndt, N.T.; Griffin, W.L.; O’Reilly, S.Y.; Hayward, N. Lithospheric, Cratonic, and Geodynamic Setting of Ni-Cu-PGE Sulfide Deposits. Econ. Geol. 2010, 105, 1057-1070, doi:10.2113/econgeo.105.6.1057. 18. Mao, Y.J.; Dash, B.; Qin, K.Z.; Bujinlkham, B.; Tang, D.M. Comparisons among the Oortsog, Dulaan, and Nomgon mafic-ultramafic intrusions in central Mongolia and Ni-Cu deposits in NW China: Implications for economic Ni-Cu-PGE ore exploration in central Mongolia. Russ. Geol. Geophys. 2018, 59, 1-18, doi:10.1016/j.rgg.2018.01.001. 19. Tolstykh, N.D.; Podlipsky, M.Y. Heavy concentrate halos as prospecting guides for PGE mineralization. Geol. Ore Depos. 2010, 52, 196-214, doi:10.1134/s1075701510030025. 20. Salʼnikova, E.B.; Yakovleva, S.Z.; Kotov, A.B.; Tolmacheva, E.V.; Plotkina, Y.V.; Fedoseenko, A.M.; Kozlovskii, A.M.; Yarmolyuk, V.V. Crystallogenesis of zircon in alkaline granites and specifics of zircon UPb dating: A case study of the Khangai magmatic area. Petrology 2014, 22, 450-461. 21. Izokh, A.E.; Polyakov, G.V.; Krivenko, A.P.; Bognibov, V.I.; Bayarbileg, L. The Gabbro Formation of Western Mongolia; Nauka: Novosibirsk, Russia, 1990; p. 269. (In Russian) 22. Izokh, A.E.; Polyakov, G.V.; Anoshin, G.N.; Golovanova, N.P. Geochemistry Of Platinum Group-Metals, Gold And Silver In Nomgonsky Troctolite-Anorthozite-Gabbro Massif (Mongolia). Geochemistry 1991, 10, 1398-1405. 23. Izokh, A.E.; Mayorova, O.N.; Lavrentiev, Y.G. Minerals of the platinum metals in the Nomgon troctolite-anorthozite-gabbro intrusive massif (Mongolia). Russ. Geol. Geophys. 1992, 33, 104-110. 24. Sengor, A.M.C.; Natalin, B.A.; Burtman, V.S. EVOLUTION OF THE ALTAID TECTONIC COLLAGE AND PALEOZOIC CRUSTAL GROWTH IN EURASIA. Nature 1993, 364, 299-307, doi:10.1038/364299a0. 25. Sengor, A.M.C.; Natal’in, B.A. Palaeotectonics of Asia: Fragments of a synthesis. In Tectonic Evolution of Asia; Yin, A., Harrison, M., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 486-640. 26. Xiao, W.J.; Zhang, L.C.; Qin, K.Z.; Sun, S.; Li, J.L. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of Central Asia. Am. J. Sci. 2004, 304, 370-395, doi:10.2475/ajs.304.4.370. 27. Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kroner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31-47, doi:10.1144/0016-76492006-022. 28. Kruk, N.N.; Rudnev, S.N.; Vladimirov, A.G.; Shokalsky, S.P.; Kovach, V.P.; Serov, P.A.; Volkova, N.I. Early-Middle Paleozoic granitoids in Gorny Altai, Russia: Implications for continental crust history and magma sources. J. Asian Earth Sci. 2011, 42, 928-948, doi:10.1016/j.jseaes.2010.12.008. 29. Safonova, I.; Seltmann, R.; Kroner, A.; Gladkochub, D.; Schulmann, K.; Xiao, W.J.; Kim, J.; Komiya, T.; Sun, M. A new concept of continental construction in the Central Asian Orogenic Belt (compared to actualistic examples from the Western Pacific). Episodes 2011, 34, 186-196, doi:10.18814/epiiugs/2011/v34i3/005. 30. Kuzmin, M.I.; Yarmolyuk, V.V. Mantle plumes of Central Asia (Northeast Asia) and their role in forming endogenous deposits. Russ. Geol. Geophys. 2014, 55, 120-143, doi:10.1016/j.rgg.2014.01.002. 31. Koval, P.V.; Antipin, V.S.; Tsypukov, Y.P.; Smirnov, V.N. Geological structure and material composition of the Baga-Khenteiskiy batholith (MPR). Russ. Geol. Geophys. 1978, 5, 68-78. (In Russian) 32. Litvinovsky, B.A.; Zanvilevich, A.N.; Alakshin, A.M.; Podladchikov, Y.Y. Angara-Vitim Batholith is the Largest Granitoid Pluton; Science: Novosibirsk, Russia, 1992; p. 141. (In Russian) 33. Yarmolyuk, V.V.; Kovalenko, V.I.; Kozakov, I.K.; Salʼnikova, E.B.; Bibikova, E.V.; Kovach, V.P.; Kozlovsky, A.M.; Kotov, A.B.; Lebedev, V.I.; Eenjin, G.; et al. The age of the Khangai batholith and the problem of batholith formation in Central Asia. Dokl. Earth Sci. 2008, 423, 1223-1228, doi:10.1134/s1028334x08080096. 34. Donskaya, T.V.; Gladkochub, D.P.; Mazukabzov, A.M.; Ivanov, A.V. Late Paleozoic-Mesozoic subductionrelated magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean. J. Asian Earth Sci. 2013, 62, 79-97, doi:10.1016/j.jseaes.2012.07.023. 35. Kovalenko, V.I.; Yarmolyuk, V.V.; Kovach, V.P.; Kotov, A.B.; Kozakov, I.K.; Salnikova, E.B.; Larin, A.M. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian Mobile Belt: Geological and isotopic evidence. J. Asian Earth Sci. 2004, 23, 605-627. 36. Yarmolyuk, V.V.; Kozlovsky, A.M.; Salʼnikova, E.B.; Kozakov, I.K.; Kotov, A.B.; Lebedev, V.I.; Eenjin, G. Age of the Khangai batholith and challenge of polychronic batholith formation in Central Asia. Dokl. Earth Sci. 2013, 452, 1001-1007, doi:10.1134/s1028334x13100176. 37. Tomurtogoo, O.; Windley, B.F.; Kroner, A.; Badarch, G.; Liu, D.Y. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: Constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen. J. Geol. Soc. 2005, 162, 125-134, doi:10.1144/0016-764903-146. 38. Li, S.; Wang, T.; Wilde, S.A.; Tong, Y. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Sci. Rev. 2013, 126, 206-234, doi:10.1016/j.earscirev.2013.06.001. 39. Ernst, R.E. Large Igneous Provinces; Cambridge University Press: Cambridge, UK, 2014; pp. 1-653. 40. Tang, G.J.; Chung, S.L.; Hawkesworth, C.J.; Cawood, P.A.; Wang, Q.; Wyman, D.A.; Xu, Y.G.; Zhao, Z.H. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China. Earth Planet. Sci. Lett. 2017, 464, 142-154, doi:10.1016/j.epsl.2017.02.022. 41. Tsukada, K.; Nuramkhaan, M.; Purevsuren, N.; Kabashima, T.; Kondo, T.; Gantumur, O.; Hasegawa, H.; Yamamoto, K. Permian adakitic magmatism in the Khanui Group, Northern Mongolia-Late Paleozoic slab-melting of subducted oceanic plate beneath the “Siberian continent”. J. Geodyn. 2018, 121, 49-63, doi:10.1016/j.jog.2018.07.004. 42. Shapovalova, M.O.; Tolstykh, N.D.; Shelepaev, R.A.; Tsibizov, L.V. The Oortsog Peridotite-Troctolite-Gabbro Intrusion, Western Mongolia: New Petrological and Geochronological Constraints. Russ. Geol. Geophys. 2019, 60, 845-861, doi:10.15372/rgg2019069. 43. Shelepaev, R.A.; Egorova, V.V.; Izokh, A.E.; Vishnevsky, A.V.; Shelepov, Y.Y.; Rudnev, S.N. Permian gabbroid intrusions of the Khangai highlands (Western Mongolia). Isotope dating of geological processes:New results, approaches and prospects. In Proceedings of the VI Russian Conference on Isotope Geochronology; Sprinter: St. Petersburg, Russia, 2015; pp. 337-338. (In Russian) 44. Izokh, A.E.; Polyakov, G.V.; Gibsher, A.S.; Balykin, P.A.; Zhuravlev, D.Z.; Parkhomenko, V.A. Highalumina layered gabbroids of the Central-Asian fold belt: Geochemical composition, Sm-Nd isotopic age, and geodynamic conditions of formation. Russ. Geol. Geophys. 1998, 39, 1565-1577. 45. Shapovalova, M.O.; Shelepaev, R.A.; Tolstykh, N.D.; Izokh, A.E. Gabbroid massifs of the Khangai Upland as a result of the interaction of the mantle plume with the lithospheric mantle. Petrology of magmatic and metamorphic complexes. In Proceedings of the X Russian Petrographic Conference with International Participation; Tomsk Center for Science and Technology: Tomsk, Russia, 2018; Volume 10, pp. 428-432. (In Russian) 46. Shapovalova, M.; Shelepaev, R.; Tolstykh, N. Petrological characteristics of mafic-ultramafic intrusions of the Khangay upland (Mongolia). In Proceedings of the 15th SGA Biennial Meeting, Glasgow, Scotland, 27-30 August 2019; Volume 2, pp. 561-564. 47. Shapovalova, M.; Tolstykh, N.; Shelepaev, R.; Safonova, I. Petrologo-geochemical features of the maficultramafic massifs of the Khangai upland, Western Mongolia. J. Asia Earth Sci. 2021, under review. 48. Lavrent’ev, Y.G.; Karmanov, N.S.; Usova, L.V. Electron-probe determination of the composition of minerals: Microanalyzer or scanning electron microscope. Russ. Geol. Geophys. 2015, 56, 1473-1482. (In Russian) 49. Lavrent’ev, Y.G.; Usova, L.V. The choice of the optimal method for calculating correction factors in X-ray microanalysis of rock-forming minerals. J. Anal. Chem. 1996, 51, 323-331. (In Russian) 50. Shapovalova, M.O.; Tolstykh, N.D.; Shelepaev, R.A. Cu-Ni-PGE mineralization of the peridotite-gabbro massif Oortsog, Western Mongolia. Ore-magmatic systems. Magmatism, metallogeny and tectonics of North Asia. Collection of scientific papers on fundamental research of the Institute of Geology and Mineralogy SB RAS. Novosibirsk: IGM SB RAS 2018, 1, 44-55. (In Russian) 51. Kuova, O.; Huhma, M.; Vuorelainen, Y. A natural cobalt analog of pentlandite. Am. Mineral. 1959, 44, 897-900. 52. Kretz, R. SYMBOLS FOR ROCK-FORMING MINERALS. Am. Mineral. 1983, 68, 277-279. 53. Likhachev, A.P. Platinum-Copper-Nickel and Platinum Deposits; Eslan: Moscow, Russia, 2006; p. 496. (In Russian) 54. Krivenko, A.P.; Lopukhov, A.S.; Glotov, A.I. Geochemical Associations of Rare and Radioactive Elements in Ore and Magmatic Complexes; Nauka: Novosibirsk, Russia, 1990; p. 55. (In Russian) 55. Tolstykh, N.; Krivolutskaya, N.; Safonova, I.; Shapovalova, M.; Zhitova, L.; Abersteiner, A. Unique Cu-rich sulphide ores of the Southern-2 orebody in the Talnakh Intrusion, Noril’sk area (Russia): Geochemistry, mineralogy and conditions of crystallization. Ore Geol. Rev. 2020, 122, doi:10.1016/j.oregeorev.2020.103525. 56. Shapovalova, M.; Shelepaev, R.; Tolstykh, N.; Kalugin, V.; Safonova, I. Petrology of the Ortsog-Uul Gabbro-Peridotite PGE-Bearing Complex, Western Mongolia. Min. Resour. Sustain. World 2015, 1-5, 983-985. 57. Barnes, S.-J.; Lightfoot, P.C. Formation of magmatic nickel-sulphide ore deposits and processes affecting their copper and platinum-group element contents. Econ. Geol. 2005, 100, 179-213. 58. Vinogradov, A.P. The average content of chemical elements in the main types of eruptions genus of the earth’s crust. Geochemical 1962, 7, 555-571. (In Russian) 59. Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta, 1964, 28, 1273-1285. 60. Anders, E.; Grevesse, N. Abundances of the elements: Meteoric and solar. Geochim. Cosmochim. Acta 1989, 53, 197-214. 61. Zhang, Z.; Mao, J.; Chai, F.; Yan, S.; Chen, B.; Pirajno, F. Geochemistry of the Permian Kalatongke mafic intrusions, Northern Xinjiang, Northwest China: Implications for the genesis of magmatic Ni-Cu sulfide deposits. Econ. Geol. 2009, 104, 185-203. 62. Radomskaya, T.A.; Glazunov, O.M.; Vlasova, V.N.; Suvorova, L.F. Geochemistry and mineralogy of platinum group element in ores of the Kingash deposit, Eastern Sayan, Russia. Geol. Ore Depos. 2017, 59, 354-374, doi:10.1134/s107570151705004x. 63. Krivolutskaya, N.; Tolstykh, N.; Kedrovskaya, T.; Naumov, K.; Kubrakova, I.; Tyutyunnik, O.; Gongalsky, B.; Kovalchuk, E.; Magazina, L.; Bychkova, Y.; et al. World-Class PGE-Cu-Ni Talnakh Deposit: New Data on the Structure and Unique Mineralization of the South-Western Branch. Minerals 2018, 8, 124, doi:10.3390/min8040124. 64. Yarmolyuk, V.V.; Kuzmin, M.I.; Kozlovsky, A.M. Late paleozoic-Early Mesozoic within-plate magmatism in North Asia: Traps, rifts, giant batholiths, and the geodynamics of their origin. Petrology 2013, 21, 101-126, doi:10.1134/s0869591113010062. 65. Kissin, S.A.; Scott, S.D. PHASE-RELATIONS INVOLVING PYRRHOTITE BELOW 350-DEGREES-C. Econ. Geol. 1982, 77, 1739-1754, doi:10.2113/gsecongeo.77.7.1739. 66. Lygin, A.V. Features of the Composition of the Ores of the Verkhnekingash Platinoid-Cobalt-Copper-Nickel Deposit (Krasnoyarsk Region); Moscow University: Moscow, Russia, 2010; Volume 2, pp. 69-72. (In Russian) 67. Svetlitskaya, T.V.; Tolstykh, N.D.; Izokh, A.E.; Thi, P.N. PGE geochemical constraints on the origin of the Ni-Cu-PGE sulfide mineralization in the Suoi Cun intrusion, Cao Bang province, Northeastern Vietnam. Mineral. Petrol. 2015, 109, 161-180, doi:10.1007/s00710-014-0361-3. 68. Vaughan, D.J.; Craig, J.R. Mineral Chemistry of Sulfides; Cambridge University Press: Cambridge, UK, 1978; p. 512. 69. Kolonin, G.R.; Orsoev, D.A.; Sinyakova, E.F.; Kislov, E.V. The use of Ni:Fe ratio in pentlandite for estimation of sulfur fugacity during the formation of PGE-bearing sulfide mineralization of Yoko-Dovyren massif. Dokl. Akad. Nauk 2000, 370, 87-91. 70. Kaneda, H.; Takenouchi, S.; Shoji, T. Stability of pentlandite in the fe-ni-co-s system. Mineral. Depos. 1986, 21, 169-180, doi:10.1007/bf00199797. 71. Craig, J.R.; Kullerud, G. Phase relations in the Cu-Fe-Ni-S system and their application to magmatic ore deposits. Econ. Geol. 1969, 4, 344-358. 72. Kullerud, G.; Yund, R.A.; Moh, G.H. Phase relations in the Cu-Fe-S, Cu-Ni-S and Fe-Ni-S systems. In Magmatic Ore Deposits; Wilson, H.D.B., Ed.; Economic Geology Publishing Co.: Lancaster, PA, USA, 1969; pp. 323-343. 73. Fleet, M.E.; Pan, Y.M. Fractional crystallization of anhydrous sulfide liquid in the system Fe-Ni-Cu-S, with application to magmatic sulfide deposits. Geochim. Cosmochim. Acta 1994, 58, 3369-3377, doi:10.1016/0016-7037(94)90092-2. 74. Sinyakova, E.; Kosyakov, V.; Nenashev, B.; Tsirkina, N.L. Single-crystal growth of (FeyNi1-y)S1-delta solid solution. J. Cryst. Growth 2005, 275, E2055-E2060, doi:10.1016/j.jcrysgro.2004.11.265. 75. Cabri, L.J. NEW DATA ON PHASE RELATIONS IN CU-FE-S SYSTEM. Econ. Geol. 1973, 68, 443-454, doi:10.2113/gsecongeo.68.4.443. 76. Cook, N.J.; Ciobanu, C.L.; Danyushevsky, L.V.; Gilbert, S. Minor and trace elements in bornite and associated Cu-(Fe)-sulfides: A LA-ICP-MS study Bornite mineral chemistry. Geochim. Cosmochim. Acta 2011, 75, 6473-6496. 77. Ramdohr, P. The Ore Minerals and Their Intergrowths, 2nd ed.; International series in earth science; Pergamon Press: London, UK, 1980; Volume 35, p. 1207. 78. Robb, L. Introduction to Ore-Forming Processes; Blackwell Publishing: Oxford, UK, 2005; 373p. 79. Mirsa, K.; Fleet, M.E. The chemical compositions of synthetic and natural pentlandite assemblages. Econ. Geol. 1973, 68, 518-539. 80. Distler, V.V.; Genkin, A.D.; Filimonova, A.A.; Hitrov, V.G.; Laputina, I.P. The zoning of copper-nickel ores of Talnakh and Oktyabr’sky deposits. Geol. Ore Depos. 1975, 2, 16-27. 81. Makovicky, E. Ternary and quaternary phase systems with PGE. The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. In CBM Special Canadian Institute of Mining, Metallurgy and Petroleum; Cabri, L.J., Ed.; Marc Veilleux Imprimeur Inc.: Boucherville, QC, Canada, 2002; Volume 54, pp. 131-175. 82. Izokh, A.E.; Maiorova, O.N. Rhodium sperrylite from the nomgon massif (mongolia). Dokl. Akad. Nauk 1990, 313, 1212-1215. 83. Stumpel, E.F.; Clark, A.M. Hollingworthite, a new rhodium mineral, identified by electron probe microanalysis. Am. Mineral. 1965, 50, 1068-1074. 84. Lorand, J.P. Sur l’origine mantellaire de l’arsenic dans les roches du manteaux: Exemple des pyroxénites à grenat du massif lherzolitique des beni bousera (Rif, maroc). CR Acad. Sci. Paris 1987, 305, 383-386. 85. Leblanc, M.; Fischer, W. Gold and platinum group elements in cobalt-arsenide ores-Hydrothermal concentration from a serpentinite source-rock (Bou-Azzer, Morocco). Mineral. Petrol. 1990, 42, 197-209, doi:10.1007/bf01162691. 86. Gervilla, F.; Leblanc, M.; TorresRuiz, J.; HachAli, P.F. Immiscibility between arsenide and sulfide melts: A mechanism for the concentration of noble metals. Can. Mineral. 1996, 34, 485-502. 87. Gervilla, F.; Sanchez-Anguita, A.; Acevedo, R.D.; Hach-Ali, P.F. Platinum-group element sulpharsenides and Pd bismuthotellurides in the metamorphosed Ni-Cu deposit at Las Aguilas (Province of San Luis, Argentina). Mineral. Mag. 1997, 61, 861-877, doi:10.1180/minmag.1997.061.409.09. 88. Gervilla, F.; Papunen, H.; Kojonen, K.; Johanson, B. Platinum-, palladium-and gold-rich arsenide ores from the Kylmakoski Ni-Cu deposit (Vammala Nickel Belt, SW Finland). Mineral. Petrol. 1998, 64, 163-185, doi:10.1007/bf01226568. 89. Hanley, J.J. The role of arsenic-rich melts and mineral phases in the development of high-grade Pt-Pd mineralization within komatiite-associated magmatic Ni-Cu sulfide horizons at dundonald beach south, Abitibi subprovince, Ontario, Canada. Econ. Geol. 2007, 102, 305-317, doi:10.2113/gsecongeo.102.2.305. 90. Tolstykh, N.D.; Sidorov, E.G.; Kozlov, A.P. Platinum-group minerals in lode and placer deposits associated with the Ural-Alaskan-type Gal’moenan complex, Koryak-Kamchatka Platinum Belt, Russia. Can. Mineral. 2004, 42, 619-630, doi:10.2113/gscanmin.42.2.619. 91. Tolstykh, N.D.; Lapukhov, A.S.; Krivenko, A.P.; Lazareva, E.V. Platinum-group minerals in gold placers in northwestern Salair. Russ. Geol. Geophys. 1999, 40, 916-925. (In Russian) 92. Helmy, H.M.; Ballhaus, C.; Fonseca, R.O.C.; Wirth, R.; Nagel, T.; Tredoux, M. Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts. Nat. Commun. 2013, 4, doi:10.1038/ncomms3405. 93. Helmy, H.M.; Ballhaus, C.; Wohlgemuth-Ueberwasser, C.; Fonseca, R.O.C.; Laurenz, V. Partitioning of Se, As, Sb, Te and Bi between monosulfide solid solution and sulfide melt-Application to magmatic sulfide deposits. Geochim. Cosmochim. Acta 2010, 74, 6174-6179, doi:10.1016/j.gca.2010.08.009. 94. Cowden, A.; Donaldson, M.J.; Naldrett, A.J.; Campbell, I.H. Platinum-group elements and gold in the komatiite-hosted Fe-Ni-Cu sulfide deposits at Kambalda, Western-Australia. Econ. Geol. 1986, 81, 1226-1235, doi:10.2113/gsecongeo.81.5.1226. 95. Chai, G.; Naldrett, A.J. Characteristics of Ni-Cu-Pge Mineralization and Genesis of the Jinchuan Deposit, Northwest China. Econ. Geol. Bullet. Soc. Econ. Geol. 1992, 87, 1475-1495, doi:10.2113/gsecongeo.87.6.1475. 96. Qin, K.-Z.; Tang, D.-M.; Su, B.-X.; Mao, Y.-J.; Xue, S.-C. The tectonic setting, stytle, basic feature, relative erosion degree, ore-bearing evaluation sign, potential analysis of mineralization of Cu-Ni bearing Permian mafic-ultramafic complexes, Northern Xinjiang. Northwest Geol. 2012, 45, 83-116. 97. Naldrett, A.J. Secular Variation of Magmatic Sulfide Deposits and Their Source Magmas. Econ. Geol. 2010, 105, 669-688, doi:10.2113/gsecongeo.105.3.669. 98. Barnes, S.J.; Naldrett, A.J.; Gorton, M.P. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem. Geol. 1985, 53, 303-323. 99. Wei, B.; Wang, C.Y.; Li, C.; Sun, Y. Origin of PGE-depleted Ni-Cu sulfide mineralization in the Triassic Hongqiling No. 7 orthopyroxenite intrusion, Central Asian orogenic belt, northeastern China. Econ. Geol. 2013, 108, 1813-1831.