Цитирование: | 1. Abbott, D.H.; Isley, A.E. The intensity, occurrence, and duration of superplume events and eras over geological time. J. Geodyn. 2002, 34, 265-307, doi:10.1016/s0264-3707(02)00024-8.
2. Maier, W.D. Platinum-group element (PGE) deposits and occurrences: Mineralization styles, genetic concepts, and exploration criteria. J. Afr. Earth Sci. 2005, 41, 165-191, doi:10.1016/j.jafrearsci.2005.03.004.
3. Dobretsov, N.L.; Borisenko, A.S.; Izokh, A.E.; Zhmodik, S.M. A thermochemical model of Eurasian Permo-Triassic mantle plumes as a basis for prediction and exploration for Cu-Ni-PGE and rare-metal ore deposits. Russ. Geol. Geophys. 2010, 51, 903-924, doi:10.1016/j.rgg.2010.08.002.
4. Polyakov, G.V.; Tolstykh, N.D.; Mekhonoshin, A.S.; Izokh, A.E.; Podlipskii, M.Y.; Orsoev, D.A.; Kolotilina, T.B. Ultramafic-mafic igneous complexes of the Precambrian East Siberian metallogenic province (southern framing of the Siberian craton): Age, composition, origin, and ore potential. Russ. Geol. Geophys. 2013, 54, 1319-1331, doi:10.1016/j.rgg.2013.10.008.
5. Ernst, R.E., Jowitt, S.M. Large Igneous Provinces (LIPs) and metallogeny. Soc. Econ. Geol. Spec. Publ. 2013, 17, 17-51.
6. Mekhonoshin, A.S.; Tolstykh, N.D.; Podlipsky, M.Y.; Kolotilina, T.B.; Vishnevsky, A.V.; Benedyuk, Y.P. PGE mineralization of dunite-wehrlite massifs at the Gutara-Uda interfluve, Eastern Sayan. Geol. Ore Depos. 2013, 55, 162-175, doi:10.1134/s1075701513030021.
7. Tolstykh, N. PGE mineralization in marginal sulfide ores of the Chineisky layered intrusion, Russia. Mineral. Petrol. 2008, 92, 283-306, doi:10.1007/s00710-007-0209-1.
8. Borisenko, A.S.; Sotnikov, V.I.; Izokh, A.E.; Polyakov, G.V.; Obolensky, A.A. Permo-Triassic mineralization in Asia and its relation to plume magmatism. Russ. Geol. Geophys. 2006, 47, 170-186.
9. Izokh, A.E.; Polyakov, G.V.; Hoa, T.T.; Balykin, P.A.; Phuong, N.T. Permian-triassic ultramafic-mafic magmatism of Northern Vietnam and Southern China as expression of plume magmatism. Russ. Geol. Geophys. 2005, 46, 922-932.
10. Shellnutt, J.G. The Emeishan large igneous province: A synthesis. Geosci. Front. 2014, 5, 369-394, doi:10.1016/j.gsf.2013.07.003.
11. Yarmolyuk, V.V.; Kozlovsky, A.M.; Savatenkov, V.M.; Kovach, V.P.; Kozakov, I.K.; Kotov, A.B.; Lebedev, V.I.; Eenjin, G. Composition, sources, and geodynamic nature of giant batholiths in Central Asia: Evidence from the geochemistry and Nd isotopic characteristics of granitoids in the Khangai zonal magmatic area. Petrology 2016, 24, 433-461, doi:10.1134/s0869591116050064.
12. Izokh, A.E.; Vishnevskii, A.V.; Polyakov, G.V.; Shelepaev, R.A. Age of picrite and picrodolerite magmatism in western Mongolia. Russ. Geol. Geophys. 2011, 52, 7-23, doi:10.1016/j.rgg.2010.12.002.
13. Shelepaev, R.A.; Polyakov, G.V.; Izokh, A.E.; Vishnevsky, A.V.; Egorova, V.V.; Shelepov, Y.Y. The Perm Intraplate Mafic-Ultramafic Associations of Asia. Materials of Conference. Correlation of Altaides and Uralides:Magmatism, Metamorphism, Stratigraphy, Geochronology, Geodynamics and Metallogeny; Publishing House SB RAS: Novosibirsk, Russia, 2016; pp. 214-216. (In Russian)
14. Yarmolyuk, V.V.; Kuzmin, M.I.; Ernst, R.E. Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences. J. Asian Earth Sci. 2014, 93, 158-179, doi:10.1016/j.jseaes.2014.07.004.
15. Pirajno, F. Ore Deposits and Mantle Plumes; Kluwer Academic: Dordrecht, The Netherlands; Boston, MA, USA, 2000; p. 556.
16. Naldrett, A.J. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration; Springer: New York, NY, USA, 2004; p. 730.
17. Begg, G.C.; Hronsky, J.A.M.; Arndt, N.T.; Griffin, W.L.; O’Reilly, S.Y.; Hayward, N. Lithospheric, Cratonic, and Geodynamic Setting of Ni-Cu-PGE Sulfide Deposits. Econ. Geol. 2010, 105, 1057-1070, doi:10.2113/econgeo.105.6.1057.
18. Mao, Y.J.; Dash, B.; Qin, K.Z.; Bujinlkham, B.; Tang, D.M. Comparisons among the Oortsog, Dulaan, and Nomgon mafic-ultramafic intrusions in central Mongolia and Ni-Cu deposits in NW China: Implications for economic Ni-Cu-PGE ore exploration in central Mongolia. Russ. Geol. Geophys. 2018, 59, 1-18, doi:10.1016/j.rgg.2018.01.001.
19. Tolstykh, N.D.; Podlipsky, M.Y. Heavy concentrate halos as prospecting guides for PGE mineralization. Geol. Ore Depos. 2010, 52, 196-214, doi:10.1134/s1075701510030025.
20. Salʼnikova, E.B.; Yakovleva, S.Z.; Kotov, A.B.; Tolmacheva, E.V.; Plotkina, Y.V.; Fedoseenko, A.M.; Kozlovskii, A.M.; Yarmolyuk, V.V. Crystallogenesis of zircon in alkaline granites and specifics of zircon UPb dating: A case study of the Khangai magmatic area. Petrology 2014, 22, 450-461.
21. Izokh, A.E.; Polyakov, G.V.; Krivenko, A.P.; Bognibov, V.I.; Bayarbileg, L. The Gabbro Formation of Western Mongolia; Nauka: Novosibirsk, Russia, 1990; p. 269. (In Russian)
22. Izokh, A.E.; Polyakov, G.V.; Anoshin, G.N.; Golovanova, N.P. Geochemistry Of Platinum Group-Metals, Gold And Silver In Nomgonsky Troctolite-Anorthozite-Gabbro Massif (Mongolia). Geochemistry 1991, 10, 1398-1405.
23. Izokh, A.E.; Mayorova, O.N.; Lavrentiev, Y.G. Minerals of the platinum metals in the Nomgon troctolite-anorthozite-gabbro intrusive massif (Mongolia). Russ. Geol. Geophys. 1992, 33, 104-110.
24. Sengor, A.M.C.; Natalin, B.A.; Burtman, V.S. EVOLUTION OF THE ALTAID TECTONIC COLLAGE AND PALEOZOIC CRUSTAL GROWTH IN EURASIA. Nature 1993, 364, 299-307, doi:10.1038/364299a0.
25. Sengor, A.M.C.; Natal’in, B.A. Palaeotectonics of Asia: Fragments of a synthesis. In Tectonic Evolution of Asia; Yin, A., Harrison, M., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 486-640.
26. Xiao, W.J.; Zhang, L.C.; Qin, K.Z.; Sun, S.; Li, J.L. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of Central Asia. Am. J. Sci. 2004, 304, 370-395, doi:10.2475/ajs.304.4.370.
27. Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kroner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31-47, doi:10.1144/0016-76492006-022.
28. Kruk, N.N.; Rudnev, S.N.; Vladimirov, A.G.; Shokalsky, S.P.; Kovach, V.P.; Serov, P.A.; Volkova, N.I. Early-Middle Paleozoic granitoids in Gorny Altai, Russia: Implications for continental crust history and magma sources. J. Asian Earth Sci. 2011, 42, 928-948, doi:10.1016/j.jseaes.2010.12.008.
29. Safonova, I.; Seltmann, R.; Kroner, A.; Gladkochub, D.; Schulmann, K.; Xiao, W.J.; Kim, J.; Komiya, T.; Sun, M. A new concept of continental construction in the Central Asian Orogenic Belt (compared to actualistic examples from the Western Pacific). Episodes 2011, 34, 186-196, doi:10.18814/epiiugs/2011/v34i3/005.
30. Kuzmin, M.I.; Yarmolyuk, V.V. Mantle plumes of Central Asia (Northeast Asia) and their role in forming endogenous deposits. Russ. Geol. Geophys. 2014, 55, 120-143, doi:10.1016/j.rgg.2014.01.002.
31. Koval, P.V.; Antipin, V.S.; Tsypukov, Y.P.; Smirnov, V.N. Geological structure and material composition of the Baga-Khenteiskiy batholith (MPR). Russ. Geol. Geophys. 1978, 5, 68-78. (In Russian)
32. Litvinovsky, B.A.; Zanvilevich, A.N.; Alakshin, A.M.; Podladchikov, Y.Y. Angara-Vitim Batholith is the Largest Granitoid Pluton; Science: Novosibirsk, Russia, 1992; p. 141. (In Russian)
33. Yarmolyuk, V.V.; Kovalenko, V.I.; Kozakov, I.K.; Salʼnikova, E.B.; Bibikova, E.V.; Kovach, V.P.; Kozlovsky, A.M.; Kotov, A.B.; Lebedev, V.I.; Eenjin, G.; et al. The age of the Khangai batholith and the problem of batholith formation in Central Asia. Dokl. Earth Sci. 2008, 423, 1223-1228, doi:10.1134/s1028334x08080096.
34. Donskaya, T.V.; Gladkochub, D.P.; Mazukabzov, A.M.; Ivanov, A.V. Late Paleozoic-Mesozoic subductionrelated magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean. J. Asian Earth Sci. 2013, 62, 79-97, doi:10.1016/j.jseaes.2012.07.023.
35. Kovalenko, V.I.; Yarmolyuk, V.V.; Kovach, V.P.; Kotov, A.B.; Kozakov, I.K.; Salnikova, E.B.; Larin, A.M. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian Mobile Belt: Geological and isotopic evidence. J. Asian Earth Sci. 2004, 23, 605-627.
36. Yarmolyuk, V.V.; Kozlovsky, A.M.; Salʼnikova, E.B.; Kozakov, I.K.; Kotov, A.B.; Lebedev, V.I.; Eenjin, G. Age of the Khangai batholith and challenge of polychronic batholith formation in Central Asia. Dokl. Earth Sci. 2013, 452, 1001-1007, doi:10.1134/s1028334x13100176.
37. Tomurtogoo, O.; Windley, B.F.; Kroner, A.; Badarch, G.; Liu, D.Y. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: Constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen. J. Geol. Soc. 2005, 162, 125-134, doi:10.1144/0016-764903-146.
38. Li, S.; Wang, T.; Wilde, S.A.; Tong, Y. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Sci. Rev. 2013, 126, 206-234, doi:10.1016/j.earscirev.2013.06.001.
39. Ernst, R.E. Large Igneous Provinces; Cambridge University Press: Cambridge, UK, 2014; pp. 1-653.
40. Tang, G.J.; Chung, S.L.; Hawkesworth, C.J.; Cawood, P.A.; Wang, Q.; Wyman, D.A.; Xu, Y.G.; Zhao, Z.H. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China. Earth Planet. Sci. Lett. 2017, 464, 142-154, doi:10.1016/j.epsl.2017.02.022.
41. Tsukada, K.; Nuramkhaan, M.; Purevsuren, N.; Kabashima, T.; Kondo, T.; Gantumur, O.; Hasegawa, H.; Yamamoto, K. Permian adakitic magmatism in the Khanui Group, Northern Mongolia-Late Paleozoic slab-melting of subducted oceanic plate beneath the “Siberian continent”. J. Geodyn. 2018, 121, 49-63, doi:10.1016/j.jog.2018.07.004.
42. Shapovalova, M.O.; Tolstykh, N.D.; Shelepaev, R.A.; Tsibizov, L.V. The Oortsog Peridotite-Troctolite-Gabbro Intrusion, Western Mongolia: New Petrological and Geochronological Constraints. Russ. Geol. Geophys. 2019, 60, 845-861, doi:10.15372/rgg2019069.
43. Shelepaev, R.A.; Egorova, V.V.; Izokh, A.E.; Vishnevsky, A.V.; Shelepov, Y.Y.; Rudnev, S.N. Permian gabbroid intrusions of the Khangai highlands (Western Mongolia). Isotope dating of geological processes:New results, approaches and prospects. In Proceedings of the VI Russian Conference on Isotope Geochronology; Sprinter: St. Petersburg, Russia, 2015; pp. 337-338. (In Russian)
44. Izokh, A.E.; Polyakov, G.V.; Gibsher, A.S.; Balykin, P.A.; Zhuravlev, D.Z.; Parkhomenko, V.A. Highalumina layered gabbroids of the Central-Asian fold belt: Geochemical composition, Sm-Nd isotopic age, and geodynamic conditions of formation. Russ. Geol. Geophys. 1998, 39, 1565-1577.
45. Shapovalova, M.O.; Shelepaev, R.A.; Tolstykh, N.D.; Izokh, A.E. Gabbroid massifs of the Khangai Upland as a result of the interaction of the mantle plume with the lithospheric mantle. Petrology of magmatic and metamorphic complexes. In Proceedings of the X Russian Petrographic Conference with International Participation; Tomsk Center for Science and Technology: Tomsk, Russia, 2018; Volume 10, pp. 428-432. (In Russian)
46. Shapovalova, M.; Shelepaev, R.; Tolstykh, N. Petrological characteristics of mafic-ultramafic intrusions of the Khangay upland (Mongolia). In Proceedings of the 15th SGA Biennial Meeting, Glasgow, Scotland, 27-30 August 2019; Volume 2, pp. 561-564.
47. Shapovalova, M.; Tolstykh, N.; Shelepaev, R.; Safonova, I. Petrologo-geochemical features of the maficultramafic massifs of the Khangai upland, Western Mongolia. J. Asia Earth Sci. 2021, under review.
48. Lavrent’ev, Y.G.; Karmanov, N.S.; Usova, L.V. Electron-probe determination of the composition of minerals: Microanalyzer or scanning electron microscope. Russ. Geol. Geophys. 2015, 56, 1473-1482. (In Russian)
49. Lavrent’ev, Y.G.; Usova, L.V. The choice of the optimal method for calculating correction factors in X-ray microanalysis of rock-forming minerals. J. Anal. Chem. 1996, 51, 323-331. (In Russian)
50. Shapovalova, M.O.; Tolstykh, N.D.; Shelepaev, R.A. Cu-Ni-PGE mineralization of the peridotite-gabbro massif Oortsog, Western Mongolia. Ore-magmatic systems. Magmatism, metallogeny and tectonics of North Asia. Collection of scientific papers on fundamental research of the Institute of Geology and Mineralogy SB RAS. Novosibirsk: IGM SB RAS 2018, 1, 44-55. (In Russian)
51. Kuova, O.; Huhma, M.; Vuorelainen, Y. A natural cobalt analog of pentlandite. Am. Mineral. 1959, 44, 897-900.
52. Kretz, R. SYMBOLS FOR ROCK-FORMING MINERALS. Am. Mineral. 1983, 68, 277-279.
53. Likhachev, A.P. Platinum-Copper-Nickel and Platinum Deposits; Eslan: Moscow, Russia, 2006; p. 496. (In Russian)
54. Krivenko, A.P.; Lopukhov, A.S.; Glotov, A.I. Geochemical Associations of Rare and Radioactive Elements in Ore and Magmatic Complexes; Nauka: Novosibirsk, Russia, 1990; p. 55. (In Russian)
55. Tolstykh, N.; Krivolutskaya, N.; Safonova, I.; Shapovalova, M.; Zhitova, L.; Abersteiner, A. Unique Cu-rich sulphide ores of the Southern-2 orebody in the Talnakh Intrusion, Noril’sk area (Russia): Geochemistry, mineralogy and conditions of crystallization. Ore Geol. Rev. 2020, 122, doi:10.1016/j.oregeorev.2020.103525.
56. Shapovalova, M.; Shelepaev, R.; Tolstykh, N.; Kalugin, V.; Safonova, I. Petrology of the Ortsog-Uul Gabbro-Peridotite PGE-Bearing Complex, Western Mongolia. Min. Resour. Sustain. World 2015, 1-5, 983-985.
57. Barnes, S.-J.; Lightfoot, P.C. Formation of magmatic nickel-sulphide ore deposits and processes affecting their copper and platinum-group element contents. Econ. Geol. 2005, 100, 179-213.
58. Vinogradov, A.P. The average content of chemical elements in the main types of eruptions genus of the earth’s crust. Geochemical 1962, 7, 555-571. (In Russian)
59. Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta, 1964, 28, 1273-1285.
60. Anders, E.; Grevesse, N. Abundances of the elements: Meteoric and solar. Geochim. Cosmochim. Acta 1989, 53, 197-214.
61. Zhang, Z.; Mao, J.; Chai, F.; Yan, S.; Chen, B.; Pirajno, F. Geochemistry of the Permian Kalatongke mafic intrusions, Northern Xinjiang, Northwest China: Implications for the genesis of magmatic Ni-Cu sulfide deposits. Econ. Geol. 2009, 104, 185-203.
62. Radomskaya, T.A.; Glazunov, O.M.; Vlasova, V.N.; Suvorova, L.F. Geochemistry and mineralogy of platinum group element in ores of the Kingash deposit, Eastern Sayan, Russia. Geol. Ore Depos. 2017, 59, 354-374, doi:10.1134/s107570151705004x.
63. Krivolutskaya, N.; Tolstykh, N.; Kedrovskaya, T.; Naumov, K.; Kubrakova, I.; Tyutyunnik, O.; Gongalsky, B.; Kovalchuk, E.; Magazina, L.; Bychkova, Y.; et al. World-Class PGE-Cu-Ni Talnakh Deposit: New Data on the Structure and Unique Mineralization of the South-Western Branch. Minerals 2018, 8, 124, doi:10.3390/min8040124.
64. Yarmolyuk, V.V.; Kuzmin, M.I.; Kozlovsky, A.M. Late paleozoic-Early Mesozoic within-plate magmatism in North Asia: Traps, rifts, giant batholiths, and the geodynamics of their origin. Petrology 2013, 21, 101-126, doi:10.1134/s0869591113010062.
65. Kissin, S.A.; Scott, S.D. PHASE-RELATIONS INVOLVING PYRRHOTITE BELOW 350-DEGREES-C. Econ. Geol. 1982, 77, 1739-1754, doi:10.2113/gsecongeo.77.7.1739.
66. Lygin, A.V. Features of the Composition of the Ores of the Verkhnekingash Platinoid-Cobalt-Copper-Nickel Deposit (Krasnoyarsk Region); Moscow University: Moscow, Russia, 2010; Volume 2, pp. 69-72. (In Russian)
67. Svetlitskaya, T.V.; Tolstykh, N.D.; Izokh, A.E.; Thi, P.N. PGE geochemical constraints on the origin of the Ni-Cu-PGE sulfide mineralization in the Suoi Cun intrusion, Cao Bang province, Northeastern Vietnam. Mineral. Petrol. 2015, 109, 161-180, doi:10.1007/s00710-014-0361-3.
68. Vaughan, D.J.; Craig, J.R. Mineral Chemistry of Sulfides; Cambridge University Press: Cambridge, UK, 1978; p. 512.
69. Kolonin, G.R.; Orsoev, D.A.; Sinyakova, E.F.; Kislov, E.V. The use of Ni:Fe ratio in pentlandite for estimation of sulfur fugacity during the formation of PGE-bearing sulfide mineralization of Yoko-Dovyren massif. Dokl. Akad. Nauk 2000, 370, 87-91.
70. Kaneda, H.; Takenouchi, S.; Shoji, T. Stability of pentlandite in the fe-ni-co-s system. Mineral. Depos. 1986, 21, 169-180, doi:10.1007/bf00199797.
71. Craig, J.R.; Kullerud, G. Phase relations in the Cu-Fe-Ni-S system and their application to magmatic ore deposits. Econ. Geol. 1969, 4, 344-358.
72. Kullerud, G.; Yund, R.A.; Moh, G.H. Phase relations in the Cu-Fe-S, Cu-Ni-S and Fe-Ni-S systems. In Magmatic Ore Deposits; Wilson, H.D.B., Ed.; Economic Geology Publishing Co.: Lancaster, PA, USA, 1969; pp. 323-343.
73. Fleet, M.E.; Pan, Y.M. Fractional crystallization of anhydrous sulfide liquid in the system Fe-Ni-Cu-S, with application to magmatic sulfide deposits. Geochim. Cosmochim. Acta 1994, 58, 3369-3377, doi:10.1016/0016-7037(94)90092-2.
74. Sinyakova, E.; Kosyakov, V.; Nenashev, B.; Tsirkina, N.L. Single-crystal growth of (FeyNi1-y)S1-delta solid solution. J. Cryst. Growth 2005, 275, E2055-E2060, doi:10.1016/j.jcrysgro.2004.11.265.
75. Cabri, L.J. NEW DATA ON PHASE RELATIONS IN CU-FE-S SYSTEM. Econ. Geol. 1973, 68, 443-454, doi:10.2113/gsecongeo.68.4.443.
76. Cook, N.J.; Ciobanu, C.L.; Danyushevsky, L.V.; Gilbert, S. Minor and trace elements in bornite and associated Cu-(Fe)-sulfides: A LA-ICP-MS study Bornite mineral chemistry. Geochim. Cosmochim. Acta 2011, 75, 6473-6496.
77. Ramdohr, P. The Ore Minerals and Their Intergrowths, 2nd ed.; International series in earth science; Pergamon Press: London, UK, 1980; Volume 35, p. 1207.
78. Robb, L. Introduction to Ore-Forming Processes; Blackwell Publishing: Oxford, UK, 2005; 373p.
79. Mirsa, K.; Fleet, M.E. The chemical compositions of synthetic and natural pentlandite assemblages. Econ. Geol. 1973, 68, 518-539.
80. Distler, V.V.; Genkin, A.D.; Filimonova, A.A.; Hitrov, V.G.; Laputina, I.P. The zoning of copper-nickel ores of Talnakh and Oktyabr’sky deposits. Geol. Ore Depos. 1975, 2, 16-27.
81. Makovicky, E. Ternary and quaternary phase systems with PGE. The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. In CBM Special Canadian Institute of Mining, Metallurgy and Petroleum; Cabri, L.J., Ed.; Marc Veilleux Imprimeur Inc.: Boucherville, QC, Canada, 2002; Volume 54, pp. 131-175.
82. Izokh, A.E.; Maiorova, O.N. Rhodium sperrylite from the nomgon massif (mongolia). Dokl. Akad. Nauk 1990, 313, 1212-1215.
83. Stumpel, E.F.; Clark, A.M. Hollingworthite, a new rhodium mineral, identified by electron probe microanalysis. Am. Mineral. 1965, 50, 1068-1074.
84. Lorand, J.P. Sur l’origine mantellaire de l’arsenic dans les roches du manteaux: Exemple des pyroxénites à grenat du massif lherzolitique des beni bousera (Rif, maroc). CR Acad. Sci. Paris 1987, 305, 383-386.
85. Leblanc, M.; Fischer, W. Gold and platinum group elements in cobalt-arsenide ores-Hydrothermal concentration from a serpentinite source-rock (Bou-Azzer, Morocco). Mineral. Petrol. 1990, 42, 197-209, doi:10.1007/bf01162691.
86. Gervilla, F.; Leblanc, M.; TorresRuiz, J.; HachAli, P.F. Immiscibility between arsenide and sulfide melts: A mechanism for the concentration of noble metals. Can. Mineral. 1996, 34, 485-502.
87. Gervilla, F.; Sanchez-Anguita, A.; Acevedo, R.D.; Hach-Ali, P.F. Platinum-group element sulpharsenides and Pd bismuthotellurides in the metamorphosed Ni-Cu deposit at Las Aguilas (Province of San Luis, Argentina). Mineral. Mag. 1997, 61, 861-877, doi:10.1180/minmag.1997.061.409.09.
88. Gervilla, F.; Papunen, H.; Kojonen, K.; Johanson, B. Platinum-, palladium-and gold-rich arsenide ores from the Kylmakoski Ni-Cu deposit (Vammala Nickel Belt, SW Finland). Mineral. Petrol. 1998, 64, 163-185, doi:10.1007/bf01226568.
89. Hanley, J.J. The role of arsenic-rich melts and mineral phases in the development of high-grade Pt-Pd mineralization within komatiite-associated magmatic Ni-Cu sulfide horizons at dundonald beach south, Abitibi subprovince, Ontario, Canada. Econ. Geol. 2007, 102, 305-317, doi:10.2113/gsecongeo.102.2.305.
90. Tolstykh, N.D.; Sidorov, E.G.; Kozlov, A.P. Platinum-group minerals in lode and placer deposits associated with the Ural-Alaskan-type Gal’moenan complex, Koryak-Kamchatka Platinum Belt, Russia. Can. Mineral. 2004, 42, 619-630, doi:10.2113/gscanmin.42.2.619.
91. Tolstykh, N.D.; Lapukhov, A.S.; Krivenko, A.P.; Lazareva, E.V. Platinum-group minerals in gold placers in northwestern Salair. Russ. Geol. Geophys. 1999, 40, 916-925. (In Russian)
92. Helmy, H.M.; Ballhaus, C.; Fonseca, R.O.C.; Wirth, R.; Nagel, T.; Tredoux, M. Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts. Nat. Commun. 2013, 4, doi:10.1038/ncomms3405.
93. Helmy, H.M.; Ballhaus, C.; Wohlgemuth-Ueberwasser, C.; Fonseca, R.O.C.; Laurenz, V. Partitioning of Se, As, Sb, Te and Bi between monosulfide solid solution and sulfide melt-Application to magmatic sulfide deposits. Geochim. Cosmochim. Acta 2010, 74, 6174-6179, doi:10.1016/j.gca.2010.08.009.
94. Cowden, A.; Donaldson, M.J.; Naldrett, A.J.; Campbell, I.H. Platinum-group elements and gold in the komatiite-hosted Fe-Ni-Cu sulfide deposits at Kambalda, Western-Australia. Econ. Geol. 1986, 81, 1226-1235, doi:10.2113/gsecongeo.81.5.1226.
95. Chai, G.; Naldrett, A.J. Characteristics of Ni-Cu-Pge Mineralization and Genesis of the Jinchuan Deposit, Northwest China. Econ. Geol. Bullet. Soc. Econ. Geol. 1992, 87, 1475-1495, doi:10.2113/gsecongeo.87.6.1475.
96. Qin, K.-Z.; Tang, D.-M.; Su, B.-X.; Mao, Y.-J.; Xue, S.-C. The tectonic setting, stytle, basic feature, relative erosion degree, ore-bearing evaluation sign, potential analysis of mineralization of Cu-Ni bearing Permian mafic-ultramafic complexes, Northern Xinjiang. Northwest Geol. 2012, 45, 83-116.
97. Naldrett, A.J. Secular Variation of Magmatic Sulfide Deposits and Their Source Magmas. Econ. Geol. 2010, 105, 669-688, doi:10.2113/gsecongeo.105.3.669.
98. Barnes, S.J.; Naldrett, A.J.; Gorton, M.P. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem. Geol. 1985, 53, 303-323.
99. Wei, B.; Wang, C.Y.; Li, C.; Sun, Y. Origin of PGE-depleted Ni-Cu sulfide mineralization in the Triassic Hongqiling No. 7 orthopyroxenite intrusion, Central Asian orogenic belt, northeastern China. Econ. Geol. 2013, 108, 1813-1831.
|