Инд. авторы: Rudaya N.A., Krivonogov S.K., Slowinski M., Cao X.Y., Zhilich S.
Заглавие: Postglacial history of the Steppe Altai: Climate, fire and plant diversity
Библ. ссылка: Rudaya N.A., Krivonogov S.K., Slowinski M., Cao X.Y., Zhilich S. Postglacial history of the Steppe Altai: Climate, fire and plant diversity // Quaternary Science Reviews. - 2020. - Vol.249. - Art.106616. - ISSN 0277-3791.
Внешние системы: DOI: 10.1016/j.quascirev.2020.106616; РИНЦ: 45250643; WoS: 000589909100006;
Реферат: eng: The Steppe Altai is a natural transition zone between the Central Asian steppes and deserts and the Siberian taiga. Various lakes located in the Kulunda lowland, the biggest part of the Steppe Altai, provide a unique archive of the environmental history of the Altai Mountain piedmont and adjacent plains. Palaeorecords from two lakes, Maloye Yarovoye and Kuchuk, provide the longest high-resolution records of the Steppe Altai and south-western Siberia, allowing us to describe the environmental history of the region with high accuracy since the last deglaciation. The main objective of this study was to establish the interrelationship between plant biodiversity, climate, and fire dynamics in the Steppe Altai from postglacial time to present day. We used several techniques for this task, including pollen and geochemical analyses, quantitative reconstruction of climate and biodiversity using multivariate statistics, and estimation of macrocharcoal accumulation rates and sources of fuel. Based on analyses of the two palaeorecords, we conclude that plant diversity and evenness show a strong positive correlation with annual precipitation. Pinus sylvestris spread throughout Kulunda lowland after 10.8 ka BP, and maximal spread of mixed coniferous-deciduous forests in south-western Siberia occurred between 7.2 and 2.7 ka BP. We propose that the maximum development of the ribbon-like forests dominated by Scotch pine characterized the Steppe Altai at that time. Forest fires occurred sparsely during the Holocene but were not inherent in pre-Holocene time. Before 650 CE, the main fuel for the fire was grass; however, forest fires rapidly increased in the Steppe Altai after 650 CE and prevailed over steppe fires after 1420 CE. Increased fire activity over the last millennium was likely human-induced. (C) 2020 Elsevier Ltd. All rights reserved.
Ключевые слова: Climate; Fire; Biodiversity; HOLOCENE CLIMATE; ENVIRONMENTAL-CHANGES; SEDIMENTS; SIBERIA; POLLEN; PAST FIRE; DAMMED LAKES; LATE PLEISTOCENE; ORGANIC GEOCHEMISTRY; Postglacial; Altai; FOREST; Holocene;
Издано: 2020
Физ. характеристика: 106616
Цитирование: 1. Aitken, M.J., Science-based dating in Archaeology. Longman, england. London. Allen, JRL coal dust in the severn estuary, southwestern UK. Mar. Pollut. Bull. 18 (1990), 169–174. 2. Andreev, A.A., Pierau, R., Kalugin, I.A., Daryin, A.V., Smolyaninova, L.G., Diekmann, B., Environmental changes in the northern Altai during the last millennium documented in Lake Teletskoye pollen record. Quat. Res. 67 (2007), 394–399, 10.1016/j.yqres.2006.11.004. 3. Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B., Quental, T.B., Marshall, C., McGuire, J.L., Lindsey, E.L., Maguire, K.C., Mersey, B., Ferrer, E.A., Has the Earth's sixth mass extinction already arrived?. Nature 471 (2011), 51–57, 10.1038/nature09678. 4. Birks, H.J.B., Felde, V.A., Bjune, A.E., Grytnes, J.A., Seppä, H., Giesecke, T., Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Rev. Palaeobot. Palynol. 228 (2016), 1–25, 10.1016/j.revpalbo.2015.12.011. 5. Birks, H.J.B., Estimating the amount of compositional change in late- Quaternary pollen stratigraphical data. Veg. Hist. Archaeobotany 16 (2007), 197–202 https ://doi.org/10.1007/s0033 4-006-0079. 6. Blaauw, M., Christeny, J.A., Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6 (2011), 457–474, 10.1214/11-BA618. 7. Bordon, A., Peyron, O., Lézine, A.-M., Brewer, S., Fouache, E., Pollen-inferred late-glacial and holocene climate in southern balkans (lake maliq). Quat. Int. 200 (2009), 19–30. 8. Box, E.O., Vegetation, J., Tian, F., Telford, R.J., Ni, J., Xu, Q., Chen, F., Liu, X., Stebich, M., Zhao, Y., Herzschuh, U., Plant functional types and climate at the global scale. 2017. Impacts of the Spatial Extent of Pollen-Climate Calibration Science, vol. 7, 1996, 309–320. 9. Bronzov, A.Ya, Verhovye bolota Narymskogo kraya (bassejn r. Vasyugan). Trudy nauchnyh issledovanij torfyanogo instituta 3 (1930), 1–99 (In Russian). 10. Brugger, S.O., Gobet, E., Sigl, M., Osmont, D., Papina, T., Rudaya, N., Schwikowski, M., Tinner, W., Ice records provide new insights into climatic vulnerability of Central Asian forest and steppe communities. Global Planet. Change 169 (2018), 188–201, 10.1016/j.gloplacha.2018.07.010. 11. Bulatov, V.I., Rotanova, I.N., Chernykh, D.V., Landscape ecology and cartographical analysis of natural salt complexes in the south west Siberia Basins of Lake Chany and Lake Kulundinskoye. Khan, M.A., Böer, B., Kust, G.S., Barth, H.J., (eds.) Sabkha Ecosystems. Tasks for Vegetation Science 42, 2006, Springer, Dordrecht, 233–247. 12. Cao, X., Herzschuh, U., Telford, R., Ni, J., A modern pollen-climate dataset from China and Mongolia: assessing its potential for climate reconstructions. Rev. Palaeobot. Palynol. 211 (2014), 87–96 https://DOI.10.1016/j.revpalbo.2014.08.007. 13. Cao, X., Tian, F., Telford, R.J., Ni, J., Xu, Q., Chen, F., Liu, X., Stebich, M., Zhao, Y., Herzschuh, U., Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation. Quat. Sci. Rev. 178 (2017), 37–53, 10.1016/j.quascirev.2017.10.030. 14. Carcaillet, C., Richard, P.J.H., Holocene changes in seasonal precipitation highlighted by fire incidence in eastern Canada. Clim. Dynam. 16 (2000), 549–559. 15. Ceballos, G., Ehrlich, P.R., Dirzo, R., Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. Unit. States Am. 114 (2017), 6089–6096. 16. Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., Ellison, A.M., Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84 (2014), 45–67. 17. Colman, S.M., Jones, G.A., Rubin, M., King, J.W., Peck, J.A., Orem, W.H., AMS radiocarbon analyses from Lake Baikal, Siberia: challenges of dating sediments from a large, oligotrophic lake. Quat. Sci. Rev. 15 (1996), 669–684. 18. Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A.F., Krebs, P., Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat. Sci. Rev. 28 (2009), 555–576, 10.1016/j.quascirev.2008.11.005. 19. Davis, M.B., Deevey, E.S. Jr., Pollen accumulation rates: estimates from late-glacial sediment of rogers lake. Science 145 (1964), 1293–1295. 20. Eichler, A., Tinner, W., Brütsch, S., Olivier, S., Papina, T., Schwikowski, M., An ice-core based history of Siberian forest fires since AD 1250. Quat. Sci. Rev. 30 (2011), 1027–1034, 10.1016/j.quascirev.2011.02.007. 21. Ellis, E.C., Klein Goldewijk, K., Siebert, S., Lightman, D., Ramankutty, N., Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecol. Biogeogr. 19:5 (2010), 589–606. 22. Enache, M.D., Cumming, B.F., Charcoal morphotypes in lake sediments from British Columbia (Canada): an assessment of their utility for the reconstruction of past fire and precipitation. J. Paleolimnol. 38 (2007), 347–363. 23. Ermakov, N., Dring, J., Rodwell, J., Classification of continental hemiboreal forests of North Asia. Braun-Blanquetia 28 (2000), 1–131. 24. Fægri, K., Iversen, J., Textbook of Pollen Analysis. fourth ed., 1989, John Wiley & Sons, Chichester, 328. 25. Felde, V.A., Flantua, S.G.A., Jenks, C.R., Benito, B.M., de Beaulieu, J.L., Kuneš, P., Magri, D., Nalepka, D., Risebrobakken, B., ter Braak, C.J.F., Allen, J.R.M., Granoszewski, W., Helmens, K.F., Huntley, B., Kondratienė, O., Kalniņa, L., Kupryjanowicz, M., Malkiewicz, M., Milner, A.M., Nita, M., Noryśkiewicz, B., Pidek, I.A., Reille, M., Salonen, J.S., Šeirienė, V., Winter, H., Tzedakis, P.C., Birks, H.J.B., Compositional turnover and variation in Eemian pollen sequences in Europe. Veg. Hist. Archaeobotany 29 (2020), 101–109, 10.1007/s00334-019-00726-5. 26. Felde, V.A., Peglar, S.M., Bjune, A.E., Grytnes, J.A., Birks, H.J.B., Modern pollen–plant richness and diversity relationships exist along a vegetational gradient in southern Norway. Holocene 26 (2016), 163–175, 10.1177/0959683615596843. 27. Feng, Z.D., Zhai, X.W., Ma, Y.Z., Huang, C.Q., Wang, W.G., Zhang, H.C., Khosbayar, P., Narantsetseg, T., Liu, K.B., Rutter, N.W., Eolian environmental changes in the Northern Mongolian Plateau during the past ∼ 35,000 yr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 245 (2007), 505–517, 10.1016/j.palaeo.2006.09.009. 28. Feurdean, A., Vannière, B., Finsinger, W., Warren, D., Connor, S.C., Forrest, M., Liakka, J., Panait, A., Werner, C., Diaconu, A.-C., Dietze, E., Feeser, I., Florescu, G., Gałka, M., Giesecke, T., Jahns, S., Jamrichová, E., Kajukało, K., Kaplan, J., Karpinska-Kołaczek, M., Kołaczek, P., Kuneš, P., Kupriyanov, D., Lamentowicz, M., Lemmen, C., Magyari, E.K., Marcisz, K., Marinova, E., Niamir, A., Novenko, E., Obremska, M., Pedziszewska, A., Pfeiffer, M., Poska, A., Rösch, M., Słowinski, M., Stancikait, M., Szal, M., Święta-Musznicka, J., Tanţău, I., Theuerkauf, M., Tonkov, S., Valkó, O., Vassiljev, J., Veski, S., Vincze, I., Wacnik, A., Wiethold, J., Hickler, T., Fire Hazard Modulation by Long-Term Dynamics in Land Cover and Dominant Forest Type in Eastern and Central Europe Biogeosciences, vol. 17, 2020, 1213–1230, 10.5194/bg-17-1213-2020. 29. Feurdean, A., Veski, S., Florescu, G., Vanniere, B., Pfeiffer, M., O'Hara, R.B., Stivrins, N., Amonc, L., Heinsaluc, A., Vassiljev, J., Hickler, T., Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe). Quat. Sci. Rev. 169 (2017), 378–390, 10.1016/j.quascirev.2017.05.024. 30. Fialkiewicz-Koziel, B., Smieja-Krol, B., Frontasyeva, M., Słowiński, M., Marcisz, K., Lapshina, E., Gilbert, D., Buttler, A., Jassey, V.E., Kaliszan, K., Laggoun-Defarge, F., Kolaczek, P., Lamentowicz, M., Anthropogenic-and natural sources of dust in peatland during the Anthropocene. Sci. Rep. 6:1 (2016), 1–8. 31. Flenley, J.R., Palynological richness and the tropical rain- forest. Bermingham, E., Dick, C.W., Mortitz, C., (eds.) Tropical Rainforests. Past, Present, and Future, 2005, University of Chicago Press, Chicago, IL, 72–77. 32. Frühauf, M., Guggenberger, G., Meinel, T., Theesfeld, I., Lentz, S., KULUNDA: Climate Smart Agriculture: South Siberian Agro-Steppe as Pioneering Region for Sustainable Land Use. 2020, Springer Nature, 10.1007/978-3-030-15927-6. 33. Ganyushkin, D., Chistyakov, K., Volkov, I., Bantcev, D., Kunaeva, E., Brandová, D., Raab, G., Christl, M., Egli, M., Palaeoclimate, glacier and treeline reconstruction based on geomorphic evidences in the Mongun-Taiga massif (south-eastern Russian Altai) during the Late Pleistocene and Holocene. Quat. Int. 470 (2018), 26–37, 10.1016/j.quaint.2017.12.031. 34. Gerasimov, I.P., Novoe v podhodah i metodah opredeleniya absolyutnogo vozrasta pochv. Izv. AN SSSR. Ser.geogr. 1 (1968), 28–37 (In Russian). 35. Gribenski, N., Jansson, K.N., Lukas, S., Stroeven, A.P., Harbor, J.M., Blomdin, R., Ivanov, M.N., Heyman, J., Petrakov, D.A., Rudoy, A., Clifton, T., Lifton, N.A., Caffee, M.W., Complex patterns of glacier advances during the late glacial in the Chagan Uzun Valley, Russian Altai. Quat. Sci. Rev. 149 (2016), 288–305, 10.1016/j.quascirev.2016.07.032. 36. Grimm, E., CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the methods of incremental sum of squares. Comput. Geosci. 13 (1987), 13–15. 37. Grimm, E., Tilia Software 2.0.2. 2004, Illinois State Museum Research and Collection Center, Springfield. 38. Gupta, S.K., Polach, H.A., Radiocarbon Dating Practices at ANU. Handbook. 1985, Radiocarbon Dating laboratory, Research School of Pacific Studies, ANU, Canberra. 39. Herget, J., Ice-dammed lake outburstfloods in the Altai Mountains, Siberia–a review with links for further readings. Tomsk State Univ. J. Biol. 17 (2012), 148–168. 40. Herget, J., Agatova, A.R., Carling, P.A., Nepop, R.K., Altai megafloods—the temporal context. Earth Sci. Rev., 200, 2020, 102995. 41. Hill, M.O., Diversity and evenness: a unifying notation and its consequences. Ecology 54:2 (1973), 427–432. 42. Hsieh, T.C., Ma, K.H., Chao, A., iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7 (2016), 1451–1456, 10.1111/2041-210X.12613. 43. Huang, X., Peng, W., Rudaya, N., Grimm, E.C., Chen, X., Cao, X., Zhang, J., Pan, X., Liu, S., Chen, C., Chen, F., Holocene vegetation and climate dynamics in the Altai mountains and surrounding areas. Geophys. Res. Lett. 45 (2018), 6628–6636, 10.1029/2018GL078028. 44. IPCC. Pachauri, R.K., Meyer, L.A., (eds.) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, 2014, IPCC, Geneva, Switzerland, 151. 45. Jackson, S.T., Blois, J.L., Community ecology in a changing environment: perspectives from the Quaternary. Proc. Natl. Acad. Sci. U. S. A., 2015, 4915–4921. 46. Jacobs, Z., Li, B., Shunkov, M.V., Kozlikin, M.B., Bolikhovskaya, N.S., Agadjanian, A.K., Uliyanov, V.A., Vasiliev, S.K., O'Gorman, K., Derevianko, A.P., Roberts, R.G., Timing of archaic hominin occupation of Denisova Cave in southern Siberia. Nature 565:7741 (2019), 594–599, 10.1038/s41586-018-0843-2. 47. Jost, L., Partitioning diversity into independent alpha and beta components. Ecology 88 (2007), 2427–2439. 48. Juggins, S., Rioja: analysis of quaternary science data version 0.7-3. Available at: http://cran.r-project.org/web/packages/rioja/index.html, 2012. 49. Kharitonenkov, M.A., History of forests in the middle irtysh area during the iron age (2500 years ago – present). Russian journal of ecosistem ecology 2:4 (2017), 1–53 (In Russian). 50. Khotinsky, N.A., Holocene of North Eurasia (Golotsen Severnoi Evrazii). 1977, Nauka, Moscow (in Russian). 51. Kirjushin, JuF., Tishkin, A.A., Skifskaja jepoha gornogo altaja. Kul'tura Naselenija V Ranneskifskoe Vremja, 1997 Barnaul. 52. Kiryushin, K.Y., Kul'turnaya prinadlezhnost’ poselencheskih kompleksov eneolita severnoj Kulundy. Derevyanko, A.P., Tishkin, A.A., (eds.) Trudy V (XXI) Vserossijskogo Arheologicheskogo S"ezda V Barnaule – Belokurihe 1, 2017, 257–262 (In Russian). 53. Klinge, M., Lehmkuhl, F., Schulte, P., Hülle, D., Nottebaum, V., Implications of (reworked) aeolian sediments and paleosols for Holocene environmental change in Western Mongolia. Geomorphology 292 (2017), 59–71, 10.1016/j.geomorph.2017.04.027. 54. Klinge, M., Sauer, D., Spatial pattern of Late Glacial and Holocene climatic and environmental development in Western Mongolia - a critical review and synthesis. Quat. Sci. Rev. 210 (2019), 26–50, 10.1016/j.quascirev.2019.02.020. 55. Kolobova, K., Roberts, R., Chabai, V., Jacob, Z., Krajcarz, M., Shalagina, A., Krivoshapkin, A., Li, B., Uthmeier, Th, Markin, S., Morley, M., O'Gorman, K., Rudaya, N., Talamo, S., Viola, B., Derevianko, A., Archaeological evidence for two separate dispersals of Neanderthals into southern Siberia. Proc. Natl. Acad. Sci. Unit. States Am. 117:6 (2020), 2879–2885, 10.1073/pnas.1918047117. 56. Kuprianova, L.A., Alyoshina, L.A., Pollen and Spores of Plants from the Flora of European Part of the USSR: I. 1972, Nauka, Leningrad, 171 (in Russian). 57. Kuzmina, E.E., Ekologiya stepej Evrazii i problema proiskhozhdeniya nomadizma. Vozniknovenie kochevogo skotovodstva. Vestnik drevnej istorii 2:221 (1997), 81–94 (In Russian). 58. Lashchinsky, N.N., Korolyuk, A. Yu, Tischenko, M.P., Lashchinskaya, N.V., Syntaxonomy and spatial structure of the Burla ribbon pine forest//Rastitel'nyj Mir Aziatskoj Rossii. Plant Life of Asian Russia) 1:29 (2018), 57–81, 10.21782/RMAR1995-2449-2018-1(57-81 (In Russian). 59. Lavrenko, E.M., Stepi SSSR. Izbrannye Trudy. SPb, 2000, 11–223 (in Russian). 60. Legendre, P., Legendre, L., third ed. Numerical Ecology, vol. 24, 2012. 61. Lehmkuhl, F., Klinge, M., Stauch, G., The extent and timing of late pleistocene glaciations in the Altai and neighbouring mountain systems, 1st ed. Developments in Quaternary Science, 2011, Elsevier Inc., 967–979, 10.1016/B978-0-444-53447-7.00069-6. 62. Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S., Schellnhuber, H.J., Tipping elements in the Earth's climate system. Proc. Natl. Acad. Sci. U. S. A. 105:6 (2008), 1786–1793. 63. Levina, T.P., Orlova, L.A., Panychev, V.A., Skabichevskaya, N.A., Paleogeografiya i radiouglerodnaya hronologiya na rubezhe plejstocena i golocena Predaltajskoj ravniny. Kajnozoj Sibiri I Severo-Vostoka SSSR, 1989, Nauka, Novosibirsk, 129–138 (In Russian). 64. Marchenko, Z.V., Svyatko, S.V., Molodin, V.I., Grishin, A.E., Rykun, M.P., Radiocarbon chronology of complexes with seima-turbino type objects (Bronze age) in southwestern Siberia. Radiocarbon 59 (2017), 1381–1397, 10.1017/RDC.2017.24. 65. Marcott, S.A., Shakun, J.D., Clark, P.U., Mix, A.C., A reconstruction of regional and global temperature for the past 11,300 years. Science 339:6124 (2013), 1198–1201, 10.1126/science.1228026. 66. Mayewski, P.A., Rohling, E.E., Stager, C.J., Karl en, W., Maasch, A., Meeker, L.D., Meyerson, E.A., Gasse, F., Van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., Steig, E.J., Holocene climate variability. Quat. Res. 62 (2004), 243–255. 67. Mei, J., Qijia and seima-turbino: the question of early contacts between northwest China and the Eurasian steppe. Bull. Mus. Far East. Antiq. 75 (2003), 31–54. 68. Meltsov, V., Poska, A., Odgaard, B.V., Sammul, M., Kull, T., Palynological richness and pollen sample evenness in relation to local floristic diversity in southern Estonia. Rev. Palaeobot. Palynol. 166:3–4 (2011), 344–351. 69. Meyers, P.A., Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org. Geochem. 34 (2003), 261–289. 70. Meyers, P.A., Ishiwatari, R., Lacustrine organic geochemistry - an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 20 (1993), 867–900. 71. New, M., Lister, D., Hulme, M., Makin, I., A high-resolution data set of surface climate over global land areas. Clim. Res. 21 (2002), 1–25. 72. Nimis, P.L., Malyshev, L.I., Bolognini, G., A phytogeographic analysis of birch woodlands in the southern part of West Siberia. Vegetatio 113 (1994), 25–39, 10.1007/BF00045461. 73. Odgaard, B.V., Pollen methods and studies. Reconstructing past biodiversity development. Encyclopedia of Quaternary Science, 2006, Elsevier, 2508–2514. 74. Orkhonselenge, A., Krivonogov, S.K., Mino, K., Kashiwaya, K., Safonova, I.Y., Yamamoto, M., Kashima, K., Nakamura, T., Kim, J.Y., Holocene sedimentary records from Lake Borsog at the eastern shore of Lake Hovsgol, Mongolia, and their paleoenvironmental implications. Quat. Int. 290–291 (2013), 95–109, 10.1016/j.quaint.2012.03.041. 75. Papalexiou, S.M., Montanari, A., Global and regional increase of precipitation extremes under global warming. Water Resour. Res. 55:6 (2019), 4901–4914. 76. Pausas, J.G., Ribeiro, E., The global fire–productivity relationship. Global Ecol. Biogeogr. 22 (2013), 728–736, 10.1111/geb.12043. 77. Prentice, I.C., Guiot, J., Huntley, B., Jolly, D., Cheddadi, R., Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim. Dynam. 12 (1996), 185–194. 78. R Core Team. R: A Language and Environment for Statistical Computing. 2018, R Foundation for Statistical Computing, Vienna https://www.R-project.org. 79. Reille, M., Pollen et spores d'Europe et d'Afrique du nord. 1992, Laboratoire de botanique historique et palynologie, URA CNRS, Marseille, France. 80. Reille, M., Pollen et spores d'Europe et d'Afrique du nord Supplement 1. 1995, Laboratoire de botanique historique et palynologie, URA CNRS, Marseille, France. 81. Reille, M., Pollen et spores d'Europe et d'Afrique du nord Supplement 2. 1998, Laboratoire de botanique historique et palynologie, URA CNRS, Marseille, France. 82. Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk-Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., Van der Plicht, J., IntCal13 and Marine13 radiocarbon age calibration curves 0-50000 years cal BP. Radiocarbon, 55, 2013, 1869—1887. 83. Reuther, A.U., Herget, J., Ivy-Ochs, S., Borodavko, P., Kubik, W., Heine, K., Constraining the timing of the most recent cataclysmic flood event from ice-dammed lakes in the Russian Altai Mountains, Siberia, using cosmogenic in situ Be. Geology 34:11 (2006), 913–916. 84. Rudaya, N., Nazarova, L., Nourgaliev, D., Palagushkina, O., Papin, D., Frolova, L., Middle-Late Holocene environmental history of Kulunda, southwestern Siberia: vegetation, climate and humans. Quat. Sci. Rev. 48 (2012), 32–42. 85. Rudaya, N., Tarasov, P., Dorofeyuk, N., Solovieva, N., Kalugin, I., Andreev, A., Daryin, A., Diekmann, B., Riedel, F., Tserendash, N., Wagner, M., Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: a step towards better understanding climate dynamics in Central Asia. Quat. Sci. Rev. 28 (2009), 540–554. 86. Rudoy, A.N., Glacier-dammed lakes and geological work of glacial superfloods in the late pleistocene, southern Siberia, Altai mountains. Quat. Int. 87 (2002), 119–140. 87. Rusanov, G.G., Zapadnye predgor'ya Altaya v mezozoe i kajnozoe. Bijskij pedagogicheskij gosudarstvennyj universitet im, 2009, V.M. SHukshina, Bijsk, 142 pp (In Russian). 88. Schimel, D., Stephens, B.B., Fisher, J.B., Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. U. S. A. 112:2 (2015), 436–441. 89. Seneviratne, S.I., Wartenburger, R., Guillod, B.P., Hirsch, A.L., Vogel, M.M., Brovkin, V., van Vuuren, D.P., Schaller, N., Boysen, L., Calvin, K.V., Doelman, J., Greve, P., Havlik, P., Humpenöder, F., Krisztin, T., Mitchell, D., Popp, A., Riahi, K., Rogelj, J., Schleussner, C.-F., Sillmann, J., Stehfest, E., Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C. Phil. Trans. R. Soc. A., 376(2119), 2018, 20160450, 10.1098/rsta.2016.0450. 90. Seppä, H., Bjune, A.E., Telford, R.J., Birks, H.J.B., Veski, S., Last nine-thousand years of temperature variability in Northern Europe. Clim. Past 5 (2009), 523–535, 10.5194/cp-5-523-2009. 91. Sizikova, A.O., Zykina, V.S., The dynamics of the late pleistocene loess formation, lozhok section, ob loess plateau, SW Siberia. Quat. Int. 365 (2015), 4–14, 10.1016/j.quaint.2014.09.030. 92. Šmilauer, P., Lepš, J., Multivariate Analysis of Ecological Data Using Canoco 5. 2014, Cambridge University Press, Cambridge. 93. Solomina, O.N., Bradley, R.S., Hodgson, D.A., Ivy-Ochs, S., Jomelli, V., Mackintosh, A.N., Nesje, A., Owen, L.A., Wanner, H., Wiles, G.C., Young, N.E., Holocene glacier fluctuations. Quat. Sci. Rev. 111 (2015), 9–34, 10.1016/j.quascirev.2014.11.018. 94. Solomonova, M.Ju, Silantyeva, M.M., Speranskaja, N.Ju, Reconstruction of the vegetation cover of archeological work: novoilinka-3 and Nishnjaa kayancha (Altai territory), Tytkesken-2 (Altai republic). Privolzhskij nauchnyj vestnik 10:26 (2013), 10–16 (in russia). 95. Telford, R.J., Birks, H.J.B., A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat. Sci. Rev. 30 (2011), 1272–1278. 96. Tinner, W., Hofstetter, S., Zeugin, F., Conedera, M., Wohlgemuth, T., Zimmermann, L., Zweifel, R., Long-distance transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps – implications for fire history reconstruction. Holocene 16:2 (2006), 287–292. 97. Tishkin, A.A., Istorija Altaja. Drevnejshaja jepoha, drevnost’ i srednevekov'e. Barnaul, 1, 2019, 392. 98. Umbanhowar, C.E. Jr., Shinneman, A.L., Tserenkhand, G., Hammon, E.R., Lor, P., Nail, K., Regional fire history based on charcoal analysis of sediments from nine lakes in western Mongolia. Holocene 19:4 (2009), 611–624, 10.1177/0959683609104039. 99. Unkelbach, J., Dulamsuren, C., Punsalpaamuu, G., Saindovdon, D., Behling, H., Late Holocene vegetation, climate, human and fire history of the forest-steppe-ecosystem inferred from core G2-A in the ‘Altai Tavan Bogd’ conservation area in Mongolia. Veg. Hist. Archaeobotany 27 (2018), 665–677, 10.1007/s00334-017-0664-5. 100. Unkelbach, J., Kashima, K., Enters, D., Dulamsuren, Ch, Punsalpaamuu, G., Behling, H., Late Holocene (Meghalayan) palaeoenvironmental evolution inferred from multi-proxy-studies of lacustrine sediments from the Dayan Nuur region of Mongolia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 530 (2019), 1–14, 10.1016/j.palaeo.2019.05.021. 101. Unkelbach, J., Kashima, K., Punsalpaamuu, G., Shumilovskikh, L., Behling, H., Decadal high-resolution multi-proxy analysis to reconstruct natural and human-induced environmental changes over the last 1350 cal. yr BP in the Altai Tavan Bogd National Park, western Mongolia. Holocene 30:7 (2020), 1016–1028, 10.1177/0959683620908662. 102. van Geel, B., Buurman, J.J., Brinkkemper, O., Schelvis, J.J., Aptroot, A., van Reenen, G., Hakbijl, T., Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J. Archaeol. Sci. 30 (2003), 873–883. 103. Vandakurova, E.V., Rastitelnost Kulundinskoi Stepi. 1950 Novosibirsk (in Russian). 104. Velichko, A.A., Catto, N., Drenova, A.N., Klimanov, V.A., Kremenetski, K.V., Nechaev, V.P., Climate changes in east Europe and Siberia at the late glacial-holocene transition. Quat. Int. 91 (2002), 75–99, 10.1016/S1040-6182(01)00104-5. 105. Velichko, A.A., Timireva, S.N., Kremenetski, K.V., MacDonald, G.M., Smith, L.C., West Siberian Plain as a late glacial desert. Quat. Int. 237 (2011), 45–53, 10.1016/j.quaint.2011.01.013. 106. Volkova, V.S., Arhipov, S.A., Babushkin, A.E., Kul'kova, I.A., Gus'kov, S.A., Kuz'mina, O.B., Levchuk, L.K., Mihajlova, I.V., Suhorukova, S.S., Stratigrafiya Neftegazonosnyh Bassejnov Sibiri. Kajnozoj Zapadnoj Sibiri. 2002, SO RAN filial GEO, Novosibirsk, 246 (In Russian). 107. Wanner, H., Solomina, O., Grosjean, M., Ritz, S.P., Jetel, M., Structure and origin of Holocene cold events. Quat. Sci. Rev. 30 (2011), 3109–3123, 10.1016/j.quascirev.2011.07.010. 108. Whitlock, C., Bianchi, M.M., Bartlein, P.J., Markgraf, V., Marlon, J., Walsh, M., McCoy, N., Postglacial vegetation, climate and fire history along the east side of the Andes (lat 41 – 42.5 S) Argentina. Quat. Res. 66 (2006), 187–201. 109. Willis, K.J., Bailey, R.M., Bhagwat, S.A., Birks, H.J.B., Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25:10 (2010), 583–591. 110. Zarubina, E., Durnikin, D., Flora of the salted lakes of the Kulunda plain (south of west Siberia). Siberian J. Ecol 2:12 (2005), 341–351 (In Russian). 111. Zhang, D., Feng, Z., Holocene climate variations in the Altai Mountains and the surrounding areas: a synthesis of pollen records. Earth Sci. Rev. 185 (2018), 847–869, 10.1016/j.earscirev.2018.08.007. 112. Zhang, Y., Kang, S., Allen, S., Allen, D., Gao, T., Sillanpää, M., Atmospheric microplastics: a review on current status and perspectives. Earth Sci. Rev., 203, 2020, 103118, 10.1016/j.earscirev.2020.103118. 113. Zhilich, S., Rudaya, N., Krivonogov, S., Nazarova, L., Pozdnyakov, D., Environmental dynamics of the Baraba forest-steppe (Siberia) over the last 8000 years and their impact on the types of economic life of the population. Quat. Sci. Rev., 163, 2017, 10.1016/j.quascirev.2017.03.022. 114. Zhou, A., He, Y., Wu, D., Zhang, X., Zhang, C., Liu, Z., Yu, J., Changes in the radiocarbon reservoir age in lake Xingyun, southwestern China during the holocene. PloS One 10 (2015), 1–8, 10.1371/journal.pone.01.