Цитирование: | 1. Amthauer G, Annerste H, Hafner SS (1976) The Mössbauer spectrum of 57Fe in silicate garnets. Zeitschrift Für Kristallographie Crystall Mater 143:14–55
2. Aulbach S, Gerdes A, Viljoen KS (2016) Formation of diamondiferous kyanite–eclogite in a subduction mélange. Geochim Cosmochim Acta 179:156–176 DOI: 10.1016/j.gca.2016.01.038
3. Aulbach S, Stagno V (2016) Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology 44:751–754 DOI: 10.1130/G38070.1
4. Aulbach S, Viljoen KS (2015) Eclogite xenoliths from the Lace kimberlite, Kaapvaal craton: from convecting mantle source to palaeo-ocean floor and back. Earth Planet Sci Lett 431:274–286 DOI: 10.1016/j.epsl.2015.08.039
5. Aulbach S, Woodland AB, Stern RA, Vasilyev P, Heaman LM, Viljoen KS (2019) Evidence for a dominantly reducing Archaean ambient mantle from two redox proxies, and low oxygen fugacity of deeply subducted oceanic crust. Sci Rep 9:20190 DOI: 10.1038/s41598-019-55743-1
6. Aulbach S, Woodland AB, Vasilyev P, Galvez ME, Viljoen KS (2017) Effects of low-pressure igneous processes and subduction on Fe3+/ΣFe and redox state of mantle eclogites from Lace (Kaapvaal craton). Earth Planet Sci Lett 474:283–295 DOI: 10.1016/j.epsl.2017.06.030
7. Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petr 107:27–40 DOI: 10.1007/BF00311183
8. Beard B, Fraracci KN, Clayton RA, Mayeda TK, Snyder GA, Sobolev NV, Taylor LA (1996) Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia. Contrib Mineral Petr 125:293–310 DOI: 10.1007/s004100050223
9. Beyer C, Frost DJ, Miyajima N (2015) Experimental calibration of a garnet–clinopyroxene geobarometer for mantle eclogites. Contrib Mineral Petr 169:18 DOI: 10.1007/s00410-015-1113-z
10. Bobrievich AP, Smirnov GI, Sobolev VS (1959) Eclogite xenolith with diamonds. Doklady Akademii Nauk SSSR 126:637–640
11. Boyd FR (1984) Siberian geotherm based on Iherzolite xenoliths from the Udachnaya kimberlite, USSR. Geology 12:528–530 DOI: 10.1130/0091-7613(1984)12<528:SGBOIX>2.0.CO;2
12. Carswell DA, Dawson JB, Gibb FG (1981) Equilibration conditions of upper-mantle eclogites: implications for kyanite-bearing and diamondiferous varieties. Mineral Mag 44:79–89 DOI: 10.1180/minmag.1981.44.333.13
13. Cerantola V, Bykova E, Mccammon C, Merlini M, Dubrovinsky L (2015) Investigation on the stability of FeCO3 down to the core mantle boundary. In: Egu general assembly conference
14. Coleman RG, Lee DE, Beatty LB, Brannock WW (1965) Eclogites and eclogites: their differences and similarities. Geol Soc Am Bull 76:483–508 DOI: 10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2
15. Creighton S, Stachel T, Eichenberg D, Luth RW (2010) Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada. Contrib Mineral Petr 159:645–657 DOI: 10.1007/s00410-009-0446-x
16. Dasgupta R, Mallik A, Tsuno K, Withers AC, Hirth G, Hirschmann MM (2013) Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493:211 DOI: 10.1038/nature11731
17. Davies GR, Nixon PH, Pearson DG, Obata M (1993) Tectonic implications of graphitized diamonds from the Ronda, peridotite massif, southern Spain. Geology 21:471–474 DOI: 10.1130/0091-7613(1993)021<0471:TIOGDF>2.3.CO;2
18. Day HW (2012) A revised diamond-graphite transition curve. Am Miner 97:52–62 DOI: 10.2138/am.2011.3763
19. Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth-Sci Rev 58:247–278. 10.1016/S0012-8252(02)00064-8 DOI: 10.1016/S0012-8252(02)00064-8
20. Dongre AN, Jacob DE, Stern RA (2015) Subduction-related origin of eclogite xenoliths from the Wajrakarur kimberlite field, Eastern Dharwar craton, Southern India: Constraints from petrology and geochemistry. Geochim Cosmochim Ac 166:165–188 DOI: 10.1016/j.gca.2015.06.023
21. Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe–Mg exchange equilibria. Contrib Mineral Petr 71:13–22 DOI: 10.1007/BF00371878
22. Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420 DOI: 10.1146/annurev.earth.36.031207.124322
23. Galimov EM (1991) Isotope fractionation related to kimberlite magmatism and diamond formation. Geochim Cosmochim Ac 55:1697–1708. 10.1016/0016-7037(91)90140-Z DOI: 10.1016/0016-7037(91)90140-Z
24. Gréau Y, Huang J-X, Griffin WL, Renac C, Alard O, O’Reilly SY (2011) Type I eclogites from Roberts Victor kimberlites: products of extensive mantle metasomatism. Geochim Cosmochim Ac 75:6927–6954 DOI: 10.1016/j.gca.2011.08.035
25. Gudmundsson G, Wood BJ (1995) Experimental tests of garnet peridotite oxygen barometry. Contrib Mineral Petr 119:56–67 DOI: 10.1007/BF00310717
26. Haggerty SE (1986) Diamond genesis in a multiply-constrained model. Nature 320:34–37. 10.1038/320034a0 DOI: 10.1038/320034a0
27. Haggerty SE (1999) A diamond trilogy: superplumes, supercontinents, and supernovae. Science 285:851–860 DOI: 10.1126/science.285.5429.851
28. Hammouda T, Keshav S (2015) Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites. Chem Geol 418:171–188 DOI: 10.1016/j.chemgeo.2015.05.018
29. Harris JW (1992) Diamond geology. In: Field J (ed) The properties of natural and synthetic diamond. Springer, New York, pp 345–393
30. Hatton CJ (1978) The geochemistry and origin of xenoliths from the Roberts Victor mine. PhD thesis, University of Cape Town
31. Howarth GH et al (2015) 3-D X-ray tomography of diamondiferous mantle eclogite xenoliths, Siberia: a review. J Asian Earth Sci 101:39–67 DOI: 10.1016/j.jseaes.2014.10.039
32. Jerde EA, Taylor LA, Crozaz G, Sobolev NV, Sobolev VN (1993) Diamondiferous eclogites from Yakutia, Siberia: evidence for a diversity of protoliths. Contrib Mineral Petr 114:189–202 DOI: 10.1007/BF00307755
33. Khokhryakov AF, Nechaev DV, Sokol AG, Palyanov YN (2009) Formation of various types of graphite inclusions in diamond: Experimental data. Lithos 112:683–689. 10.1016/j.lithos.2009.05.010 DOI: 10.1016/j.lithos.2009.05.010
34. Kiseeva ES et al (2018) Oxidized iron in garnets from the mantle transition zone. Nat Geosci 11:144–147 DOI: 10.1038/s41561-017-0055-7
35. Kopylova MG, Beausoleil Y, Goncharov A, Burgess J, Strand P (2016) Spatial distribution of eclogite in the Slave cratonic mantle: the role of subduction. Tectonophysics 672:87–103 DOI: 10.1016/j.tecto.2016.01.034
36. Korsakov AV, Perraki M, Zedgenizov DA, Bindi L, Vandenabeele P, Suzuki A, Kagi H (2010) Diamond-graphite relationships in ultrahigh-pressure metamorphic rocks from the Kokchetav Massif, Northern Kazakhstan. J Petrol 51:763–783 DOI: 10.1093/petrology/egq001
37. Lagarec K, Rancourt DG (1999) A new model for multidimensional distributions of hyperfine parameters in Mossbauer spectroscopy. In: Kodama H, Mermut AR, Torrance JK (eds) 11th International Clay Conference, Ottawa, Canada, 1999. ICC-97 Organizin committe, Ottawa, Canada, p 825
38. Lavrent’ev YG, Karmanov NS, Usova LV (2015) Electron probe microanalysis of minerals: Microanalyzer or scanning electron microscope? Russ Geol Geophys 56:1154–1161 DOI: 10.1016/j.rgg.2015.07.006
39. Leung I, Guo W, Friedman I, Gleason J (1990) Natural occurrence of silicon carbide in a diamondiferous kimberlite from Fuxian. Nature 346:874–874 DOI: 10.1038/346874a0
40. Liu Y et al (2009) Metasomatic origin of diamonds in the world’s largest diamondiferous eclogite. Lithos 112:1014–1024 DOI: 10.1016/j.lithos.2009.06.036
41. Luth RW (1993) Diamonds, eclogites, and the oxidation state of the Earth’s mantle. Science 261:66–68 DOI: 10.1126/science.261.5117.66
42. Luth RW (2001) Experimental determination of the reaction Aragonite+Magnesite= Dolomite at 5 to 9 GPa. Contrib Mineral Petr 141:222–232 DOI: 10.1007/s004100100238
43. Luth RW, Stachel T (2014) The buffering capacity of lithospheric mantle: implications for diamond formation. Contrib Mineral Petr 168:1083 DOI: 10.1007/s00410-014-1083-6
44. Luth RW, Virgo D, Boyd FR, Wood BJ (1990) Ferric iron in mantle-derived garnets. Contrib Mineral Petr 104:56–72 DOI: 10.1007/BF00310646
45. Massonne HJ (1998) A new occurrence of microdiamonds in quartzofeldspathic rocks of the Saxonian Erzgebirge, Germany, and their metamorphic evolution. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) 7th International Kimberlite Conference: extended abstracts, Cape Town, South Africa, 1998. vol 1. Red Roof Design, pp 552–554
46. Matjuschkin V, Woodland AB, Frost DJ, Yaxley GM (2020) Reduced methane-bearing fluids as a source for diamond. Sci Rep 10:1–8 DOI: 10.1038/s41598-020-63518-2
47. Matveev S, Ballhaus C, Fricke K, Truckenbrodt J, Ziegenbein D (1997) Volatiles in the Earth’s mantle: I. Synthesis of CHO fluids at 1273 K and 2.4 GPa. Geochim Cosmochim Ac 61:3081–3088. 10.1016/S0016-7037(97)00142-7 DOI: 10.1016/S0016-7037(97)00142-7
48. McCammon CA, Griffin WL, Shee SR, O’Neill HS (2001) Oxidation during metasomatism in ultramafic xenoliths from the Wesselton kimberlite, South Africa: implications for the survival of diamond. Contrib Mineral Petr 141:287–296. 10.1007/s004100100244 DOI: 10.1007/s004100100244
49. Meyer HOA (1987) Mantle xenoliths. Wiley, Chichester
50. Mikhailenko DS, Korsakov AV, Zelenovskiy PS, Golovin AV (2016) Graphite–diamond relations in mantle rocks: evidence from an eclogitic xenolith from the Udachnaya kimberlite (Siberian Craton). Am Miner 101:2155–2167 DOI: 10.2138/am-2016-5657
51. Morimoto N (1989) Nomenclature of pyroxenes. Mineral J 14:198–221 DOI: 10.2465/minerj.14.198
52. Nakamura D (2009) A new formulation of garnet–clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set. J Metamorph Geol 27:495–508 DOI: 10.1111/j.1525-1314.2009.00828.x
53. Navon O, Hutcheon ID, Rossman GR, Wasserburg GJ (1988) Mantle-derived fluids in diamond micro-inclusions. Nature 335:784–789. 10.1038/335784a0 DOI: 10.1038/335784a0
54. O’Reilly SY, Griffin WL (1995) Trace-element partitioning between garnet and clinopyroxene in mantle-derived pyroxenites and eclogites: PTX controls. Chem Geol 121:105–130 DOI: 10.1016/0009-2541(94)00147-Z
55. Orlov UL (1977) The mineralogy of the diamond. Wiley, New York
56. Pal’yanov YN, Sokol AG, Khokhryakov AF, Sobolev NV (2010) Experimental study of interaction in the CO2-C system at mantle PT parameters. Dokl Earth Sci 435:1492 DOI: 10.1134/S1028334X10110188
57. Pearson DG, Boyd FR, Haggerty SE, Pasteris JD, Field SW, Nixon PH, Pokhilenko NP (1994) The characterisation and origin of graphite in cratonic lithospheric mantle: a petrological carbon isotope and Raman spectroscopic study. Contrib Mineral Petr 115:449–466 DOI: 10.1007/BF00320978
58. Pearson DG, Davies GR, Nixon PH, Milledge HJ (1989) Graphitized diamonds from a peridotite massif in Morocco and implications for anomalous diamond occurrences. Nature 338:60–62 DOI: 10.1038/338060a0
59. Pokhilenko NP, Sobolev NV, Yefimova YS (1982) Xenolith of deformed diamond-bearing kyanite eclogite from the Udachnaya pipe, Yakutia. Doklady Akademii Nauk SSSR 266:212–216
60. Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38:279–296 DOI: 10.1016/0040-1951(77)90215-3
61. Potapkin V, Chumakov AI, Smirnov GV, Celse J-P, Rüffer R, McCammon C, Dubrovinsky L (2012) The 57Fe synchrotron Mössbauer source at the ESRF. J Synchrotron Radiat 19:559–569 DOI: 10.1107/S0909049512015579
62. Prescher C, McCammon C, Dubrovinsky L (2012) MossA: a program for analyzing energy-domain Mossbauer spectra from conventional and synchrotron sources. J Appl Crystallogr 45:329–331. 10.1107/S0021889812004979 DOI: 10.1107/S0021889812004979
63. Purwin H, Lauterbach S, Brey GP, Woodland AB, Kleebe HJ (2013) An experimental study of the Fe oxidation states in garnet and clinopyroxene as a function of temperature in the system CaO–FeO–Fe2O3–MgO–Al2O3–SiO2: implications for garnet-clinopyroxene geothermometry. Contrib Miner Petrol 165:623–639 DOI: 10.1007/s00410-012-0827-4
64. Ragozin AL, Shatsky VS, Zedgenizov DA, Mityukhin SI (2006) Evidence for evolution of diamond crystallization medium in eclogite xenolith from the Udachnaya kimberlite pipe, Yakutia. Dokl Earth Sci 407:465–468 DOI: 10.1134/S1028334X06030263
65. Rancourt DG, Ping JY (1991) Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nucl Instrum Methods Phys Res Sect B 58:85–97 DOI: 10.1016/0168-583X(91)95681-3
66. Ravna EK, Terry MP (2003) Geothermobarometry of phengite-kyanite-quartz/coesite eclogites. Paper presented at the Eleventh Annual V. M. Goldschmidt Conference, Hot Springs, Virginia, USA
67. Robinson DN (1979) Diamond and graphite in eclogite xenoliths from kimberlite. In: Boyd Hoam FR (ed) The Mantle Sample: Inclusions in Kimberlites and Other Volcanics, Proceedings of the 2nd International Kimberlite Conference, vol 1. American Geophysical Union, Washington, pp 104-126
68. Rohrbach A, Schmidt MW (2011) Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature 472:209–212 DOI: 10.1038/nature09899
69. Rüffer R, Chumakov AI (1996) Nuclear-resonance beamline at ESRF. Hyperfine Interact 97–98:589–604 DOI: 10.1007/BF02150199
70. Schmickler B, Jacob DE, Foley SF (2004) Eclogite xenoliths from the Kuruman kimberlites, South Africa: geochemical fingerprinting of deep subduction and cumulate processes. Lithos 75:173–207 DOI: 10.1016/j.lithos.2003.12.012
71. Schrauder M, Navon O (1993) Solid carbon dioxide in a natural diamond. Nature 365:42 DOI: 10.1038/365042a0
72. Shirey SB et al (2013) Diamonds and the geology of mantle carbon. Carbon Earth 75:355–421. 10.2138/rmg.2013.75.12 DOI: 10.2138/rmg.2013.75.12
73. Smart K, Cartigny P, Tappe S, Klemme S (2017) Lithospheric diamond formation as a consequence of methane-rich volatile flooding: an example from diamondiferous eclogite xenoliths of the Karelian craton (Finland). Geochim Cosmochim Ac 206:312–342 DOI: 10.1016/j.gca.2017.03.014
74. Smart KA, Tappe S, Simonetti A, Simonetti SS, Woodland AB, Harris C (2017) Tectonic significance and redox state of Paleoproterozoic eclogite and pyroxenite components in the Slave cratonic mantle lithosphere, Voyageur kimberlite, Arctic Canada. Chem Geol 455:98–119 DOI: 10.1016/j.chemgeo.2016.10.014
75. Smit KV, Shirey SB, Stern RA, Steele A, Wang W (2016) Diamond growth from C–H–N–O recycled fluids in the lithosphere: Evidence from CH4 micro-inclusions and δ13C–δ15N–N content in Marange mixed-habit diamonds. Lithos 265:68–81 DOI: 10.1016/j.lithos.2016.03.015
76. Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343:742–746 DOI: 10.1038/343742a0
77. Sobolev VN, McCammon CA, Taylor LA, Snyder GA, Sobolev NV (1999) Precise Mössbauer milliprobe determination of ferric iron in rock-forming minerals and limitations of electron microprobe analysis. Am Miner 84:78–85 DOI: 10.2138/am-1999-1-208
78. Stachel T, Luth RW (2015) Diamond formation—where, when and how? Lithos 220:200–220 DOI: 10.1016/j.lithos.2015.01.028
79. Stachel T, Viljoen KS, McDade P, Harris JW (2004) Diamondiferous lithospheric roots along the western margin of the Kalahari Craton—the peridotitic inclusion suite in diamonds from Orapa and Jwaneng. Contrib Miner Petrol 147:32–47 DOI: 10.1007/s00410-003-0535-1
80. Stagno V (2019) Carbon, carbides, carbonates and carbonatitic melts in the Earth’s interior. J Geol Soc 176:375–387 DOI: 10.1144/jgs2018-095
81. Stagno V, Fei Y (2020) The redox boundaries of earth’s interior. Elements 16:167–172 DOI: 10.2138/gselements.16.3.167
82. Stagno V, Frost DJ, McCammon CA, Mohseni H, Fei Y (2015) The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks. Contrib Mineral Petr 169:16 DOI: 10.1007/s00410-015-1111-1
83. Stagno V, Ojwang DO, McCammon CA, Frost DJ (2013) The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493:84 DOI: 10.1038/nature11679
84. Stepanov AS, Shatsky VS, Zedgenizov DA, Ragozin AL (2008) Chemical heterogeneity in the diamondiferous eclogite xenolith from the Udachnaya Kimberlite Pipe. Dokl Earth Sci 419:308–311. 10.1134/S1028334x0802027x DOI: 10.1134/S1028334x0802027x
85. Stockhert B, Duyster J, Trepmann C, Massonne HJ (2001) Microdiamond daughter crystals precipitated from supercritical COH plus silicate fluids included in garnet Erzgebirge, Germany. Geology 29:391–394. 10.1130/0091-7613(2001)029%3c0391:Mdcpfs%3e2.0.Co;2 DOI: 10.1130/0091-7613(2001)029<0391:Mdcpfs>2.0.Co;2
86. Sverjensky DA, Stagno V, Huang F (2014) Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat Geosci 7:909–913 DOI: 10.1038/ngeo2291
87. Tappe S, Smart KA, Pearson DG, Steenfelt A, Simonetti A (2011) Craton formation in Late Archean subduction zones revealed by first Greenland eclogites. Geology 39:1103–1106 DOI: 10.1130/G32348.1
88. Taylor LA, Anand M (2004) Diamonds: time capsules from the Siberian Mantle. Chemie der Erde-Geochemistry 64:1–74 DOI: 10.1016/j.chemer.2003.11.006
89. Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank Kimberlite, South Africa, part I: mineralogy, petrography, and whole rock chemistry. J Geol 97:551–567 DOI: 10.1086/629334
90. Thomassot E, Cartigny P, Harris JW, Viljoen KS (2007) Methane-related diamond crystallization in the Earth’s mantle: stable isotope evidences from a single diamond-bearing xenolith. Earth Planet Sci Lett 257:362–371 DOI: 10.1016/j.epsl.2007.02.020
91. Tomilenko AA, Ragozin AL, Shatsky VS, Shebanin AP (2001) Variation in the fluid phase composition in the process of natural diamond crystallization. Dokl Earth Sci 379:571–574
92. Viljoen F, Dobbe R, Harris J, Smit B (2010) Trace element chemistry of mineral inclusions in eclogitic diamonds from the Premier (Cullinan) and Finsch kimberlites, South Africa: implications for the evolution of their mantle source. Lithos 118:156–168 DOI: 10.1016/j.lithos.2010.04.011
93. Viljoen KS, Schulze DJ, Quadling AG (2005) Contrasting group I and group II eclogite xenolith petrogenesis: petrological, trace element and isotopic evidence from eclogite, garnet-websterite and alkremite xenoliths in the Kaalvallei kimberlite, South Africa. J Petrol 46:2059–2090 DOI: 10.1093/petrology/egi047
94. Woodland AB, Ross CR (1994) A crystallographic and Mössbauer spectroscopy study of Fe2 +3Al2Si3O12− Fe2 +3Fe3 +2 Si3O12, (almandine-"skiagite") and Ca3Fe3 +2 Si3O12− Fe2 +3 Fe3 +2Si3O12 (andradite-"skiagite") garnet solid solutions. Phys Chem Miner 21:117–132 DOI: 10.1007/BF00203142
95. Zedgenizov DA, Ragozin AL, Shatsky VS, Araujo D, Griffin WL, Kagi H (2009) Mg and Fe-rich carbonate–silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 112:638–647 DOI: 10.1016/j.lithos.2009.05.008
96. Zhang C, Duan Z (2009) A model for C-O–H fluid in the Earth’s mantle. Geochimica Et Cosmochim Acta 73:2089–2102 DOI: 10.1016/j.gca.2009.01.021
|