Инд. авторы: Semerikova A., Chanyshev A.D., Glazyrin K., Pakhomova A., Kurnosov A., Litasov K., Dubrovinsky L., Rashchenko S.V.
Заглавие: Face-Centered Cubic Platinum Hydride and Phase Diagram of PtH
Библ. ссылка: Semerikova A., Chanyshev A.D., Glazyrin K., Pakhomova A., Kurnosov A., Litasov K., Dubrovinsky L., Rashchenko S.V. Face-Centered Cubic Platinum Hydride and Phase Diagram of PtH // European Journal of Inorganic Chemistry. - 2020. - Vol.2020. - Iss. 48. - P.4532-4538. - ISSN 1434-1948. - EISSN 1099-0682.
Внешние системы: DOI: 10.1002/ejic.202000849; РИНЦ: 45108643; WoS: 000585934600001;
Реферат: eng: Recent research on superconductivity of high-pressure hydrides generated many phase stability calculations with a lack of their experimental verification; a typical example is Pt-H system. The stability of eight PtH structures was predicted, while the experiments revealed the existence of only hexagonal close-packed (hcp) and trigonal PtH. Face-centered cubic (fcc) PtH was predicted to be nearly isoentalpic to the hcp PtH and stable near 100 GPa, but never observed experimentally. Here we report the first synthesis of the fcc PtH using laser-heated diamond anvil cell. It was found to occupy a high-temperature area of the phase diagram in a wide pressure range of 20-100 GPa, being metastable at room temperature. Our results look promising for uncovering weak approximations in current high-pressure hydrides stability ab initio calculations.
Ключевые слова: SUPERCONDUCTIVITY; HIGH-PRESSURE; Hydrides; High temperature; High pressure; Platinum; LANTHANUM;
Издано: 2020
Физ. характеристика: с.4532-4538
Цитирование: 1. A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov and S. I. Shylin, Nature, 2015, 525, 73–76. 2. H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft and R. J. Hemley, Proc. Natl. Acad. Sci. USA, 2017, 114, 6990–6995. 3. A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz and M. I. Eremets, Nature, 2019, 569, 528–531. 4. M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin and R. J. Hemley, Phys. Rev. Lett, 2019, 122, 027001. 5. C. Zhang, X.-J. Chen and H.-Q. Lin, J. Phys. Condens. Matter, 2012, 24, 035701. 6. R. Szczȩśniak, D. Szczȩśniak and K. M. Huras, Phys. Status Solidi B, 2014, 251, 178–183. 7. D. Szcześniak and T. P. Zemła, Supercond. Sci. Technol, 2015, 28, 085018. 8. N. Hirao, F. Hirosh, O. Yasuo, T. Kenichi and K. Takumi, Acta Crystallogr., Sect. A, 2008, 64, C609–610. 9. T. Scheler, O. Degtyareva, M. Marqués, C. L. Guillaume, J. E. Proctor, S. Evans and E. Gregoryanz, Phys. Rev. B 2011, 83, DOI https://doi.org/10.1103/PhysRevB.83.214106. 10. X.-F. Zhou, A. R. Oganov, X. Dong, L. Zhang, Y. Tian and H.-T. Wang, Phys. Rev. B 2011, 84, DOI https://doi.org/10.1103/PhysRevB.84.054543. 11. D. Y. Kim, R. H. Scheicher, C. J. Pickard, R. J. Needs and R. Ahuja, Phys. Rev. Lett. 2011, 107, DOI https://doi.org/10.1103/PhysRevLett.107.117002. 12. G. Gao, H. Wang, L. Zhu and Y. Ma, J. Phys. Chem. C, 2012, 116, 1995–2000. 13. I. Errea, M. Calandra and F. Mauri, Phys. Rev. B 2014, 89, DOI https://doi.org/10.1103/PhysRevB.89.064302. 14. Y. Liu, D. Duan, X. Huang, F. Tian, D. Li, X. Sha, C. Wang, H. Zhang, T. Yang, B. Liu and T. Cui, J. Phys. Chem. C, 2015, 119, 15905–15911. 15. P. Zaleski-Ejgierd, Phys. Chem. Chem. Phys, 2014, 16, 3220. 16. T. Scheler, M. Marqués, Z. Konôpková, C. L. Guillaume, R. T. Howie and E. Gregoryanz, Phys. Rev. Lett. 2013, 111, DOI https://doi.org/10.1103/PhysRevLett.111.215503. 17. G. Liu, Z. Yu, S. Li and H. Wang, Mater. Lett, 2019, 249, 84–86. 18. A. Sano, E. Ohtani, T. Kondo, N. Hirao, T. Sakai, N. Sata, Y. Ohishi and T. Kikegawa, Geophys. Res. Lett, 2008, 35, L03303. 19. T. Matsuoka, M. Hishida, K. Kuno, N. Hirao, Y. Ohishi, S. Sasaki, K. Takahama and K. Shimizu, Phys. Rev. B 2019, 99, DOI https://doi.org/10.1103/PhysRevB.99.144511. 20. S. Ono, T. Kikegawa and Y. Ohishi, Solid State Commun, 2005, 133, 55–59. 21. N. C. Holmes, J. A. Moriarty, G. R. Gathers and W. J. Nellis, J. Appl. Phys, 1989, 66, 2962–2967. 22. Y. Fukai, in: The Metal-Hydrogen System: Basic Bulk Properties, Springer, Berlin; New York, 2005. 23. Y. Fei, A. Ricolleau, M. Frank, K. Mibe, G. Shen and V. Prakapenka, Proc. Natl. Acad. Sci. USA, 2007, 104, 9182–9186. 24. H.-P. Liermann, Z. Konôpková, W. Morgenroth, K. Glazyrin, J. Bednarčik, E. E. McBride, S. Petitgirard, J. T. Delitz, M. Wendt, Y. Bican, A. Ehnes, I. Schwark, A. Rothkirch, M. Tischer, J. Heuer, H. Schulte-Schrepping, T. Kracht and H. Franz, J. Synchrotron Radiat, 2015, 22, 908–924. 25. C. Prescher and V. B. Prakapenka, High Pressure Res, 2015, 35, 223–230. 26. B. H. Toby and R. B. Von Dreele, Appl. Catal. A, 2013, 46, 544–549.